
Visual Basic .NET
Notes for ProfessionalsVisual Basic®

.NET
Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial Visual Basic® .NET group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

100+ pages
of professional hints and tricks

https://goalkicker.com
https://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with Visual Basic .NET Language 2 ..
Section 1.1: Hello World 2 ...
Section 1.2: Hello World on a Textbox upon Clicking of a Button 2 ..
Section 1.3: Region 3 ...
Section 1.4: Creating a simple Calculator to get familiar with the interface and code 4 ..

Chapter 2: Declaring variables 8 ..
Section 2.1: Declaring and assigning a variable using a primitive type 8 ...
Section 2.2: Levels of declaration – Local and Member variables 10 ...
Section 2.3: Example of Access Modifiers 11 ...

Chapter 3: Introduction to Syntax 14 ...
Section 3.1: Intellisense Helper 14 ...
Section 3.2: Declaring a Variable 14 ...
Section 3.3: Comments 15 ...
Section 3.4: Modifiers 15 ..
Section 3.5: Object Initializers 16 ...
Section 3.6: Collection Initializer 17 ...
Section 3.7: Writing a function 19 ...

Chapter 4: Operators 21 ...
Section 4.1: String Concatenation 21 ..
Section 4.2: Math 21 ...
Section 4.3: Assignment 22 ..
Section 4.4: Comparison 23 ...
Section 4.5: Bitwise 23 ..

Chapter 5: Conditions 25 ...
Section 5.1: If operator 25 ..
Section 5.2: IF...Then...Else 25 ...

Chapter 6: Short-Circuiting Operators (AndAlso - OrElse) 27 ..
Section 6.1: OrElse Usage 27 ...
Section 6.2: AndAlso Usage 27 ..
Section 6.3: Avoiding NullReferenceException 27 ...

Chapter 7: Date 30 ...
Section 7.1: Converting (Parsing) a String to a Date 30 ...
Section 7.2: Converting a Date To A String 30 ..

Chapter 8: Array 31 ...
Section 8.1: Array definition 31 ..
Section 8.2: Null Array Variables 31 ...
Section 8.3: Array initialization 32 ...
Section 8.4: Declare a single-dimension array and set array element values 32 ...
Section 8.5: Jagged Array Initialization 32 ..
Section 8.6: Non-zero lower bounds 32 ...
Section 8.7: Referencing Same Array from Two Variables 33 ..
Section 8.8: Multidimensional Array initialization 33 ...

Chapter 9: Lists 34 ..
Section 9.1: Add items to a List 34 ...
Section 9.2: Check if item exists in a List 34 ...

Section 9.3: Loop through items in list 34 ..
Section 9.4: Create a List 35 ..
Section 9.5: Remove items from a List 36 ..
Section 9.6: Retrieve items from a List 36 ..

Chapter 10: Enum 38 ..
Section 10.1: GetNames() 38 ..
Section 10.2: HasFlag() 38 ...
Section 10.3: Enum definition 39 ..
Section 10.4: Member initialization 39 ...
Section 10.5: The Flags attribute 39 ..
Section 10.6: GetValues() 40 ..
Section 10.7: String parsing 40 ..
Section 10.8: ToString() 41 ...
Section 10.9: Determine whether a Enum has FlagsAttribute specified or not 41 ...
Section 10.10: For-each flag (flag iteration) 42 ..
Section 10.11: Determine the amount of flags in a flag combination 42 ...
Section 10.12: Find the nearest value in a Enum 43 ...

Chapter 11: Dictionaries 45 ...
Section 11.1: Create a dictionary filled with values 45 ..
Section 11.2: Loop through a dictionary and print all entries 45 ..
Section 11.3: Checking for key already in dictionary - data reduction 45 ...
Section 11.4: Getting a dictionary value 46 ...

Chapter 12: Looping 47 ...
Section 12.1: For...Next 47 ..
Section 12.2: For Each...Next loop for looping through collection of items 48 ..
Section 12.3: Short Circuiting 48 ..
Section 12.4: While loop to iterate while some condition is true 50 ...
Section 12.5: Nested Loop 50 ...
Section 12.6: Do...Loop 51 ...

Chapter 13: File Handling 53 ..
Section 13.1: Write Data to a File 53 ..
Section 13.2: Read All Contents of a File 53 ...
Section 13.3: Write Lines Individually to a Text File using StreamWriter 53 ...

Chapter 14: File/Folder Compression 54 ..
Section 14.1: Adding File Compression to your project 54 ..
Section 14.2: Creating zip archive from directory 54 ..
Section 14.3: Extracting zip archive to directory 54 ...
Section 14.4: Create zip archive dynamicaly 54 ..

Chapter 15: Connection Handling 55 ...
Section 15.1: Public connection property 55 ...

Chapter 16: Data Access 56 ..
Section 16.1: Read field from Database 56 ...
Section 16.2: Simple Function to read from Database and return as DataTable 57 ...

Chapter 17: Type conversion 58 ..
Section 17.1: Converting Text of The Textbox to an Integer 58 ..

Chapter 18: ByVal and ByRef keywords 59 ...
Section 18.1: ByRef keyword 59 ...
Section 18.2: ByVal keyword 59 ..

Chapter 19: Console 61 ...

Section 19.1: Console.ReadLine() 61 ..
Section 19.2: Console.Read() 61 ..
Section 19.3: Console.ReadKey() 61 ..
Section 19.4: Prototype of command line prompt 61 ...
Section 19.5: Console.WriteLine() 62 ...

Chapter 20: Functions 63 ..
Section 20.1: Defining a Function 63 ...
Section 20.2: Defining a Function #2 63 ..

Chapter 21: Recursion 64 ...
Section 21.1: Compute nth Fibonacci number 64 ...

Chapter 22: Random 65 ...
Section 22.1: Declaring an instance 65 ...
Section 22.2: Generate a random number from an instance of Random 65 ..

Chapter 23: Classes 67 ..
Section 23.1: Abstract Classes 67 ..
Section 23.2: Creating classes 67 ..

Chapter 24: Generics 69 ..
Section 24.1: Create a generic class 69 ..
Section 24.2: Instance of a Generic Class 69 ...
Section 24.3: Define a 'generic' class 69 ..
Section 24.4: Use a generic class 69 ..
Section 24.5: Limit the possible types given 70 ...
Section 24.6: Create a new instance of the given type 70 ...

Chapter 25: Disposable objects 71 ...
Section 25.1: Basic concept of IDisposable 71 ...
Section 25.2: Declaring more objects in one Using 71 ...

Chapter 26: NullReferenceException 73 ..
Section 26.1: Empty Return 73 ...
Section 26.2: Uninitialized variable 73 ..

Chapter 27: Using Statement 74 ...
Section 27.1: See examples under Disposable objects 74 ..

Chapter 28: Option Strict 75 ..
Section 28.1: Why Use It? 75 ..
Section 28.2: How to Switch It On 75 ..

Chapter 29: Option Explicit 77 ...
Section 29.1: What is it? 77 ...
Section 29.2: How to switch it on? 77 ...

Chapter 30: Option Infer 78 ...
Section 30.1: How to enable/disable it 78 ..
Section 30.2: What is it? 78 ..
Section 30.3: When to use type inference 79 ..

Chapter 31: Error Handling 81 ...
Section 31.1: Try...Catch...Finally Statement 81 ...
Section 31.2: Creating custom exception and throwing 81 ..
Section 31.3: Try Catch in Database Operation 82 ..
Section 31.4: The Un-catchable Exception 82 ..
Section 31.5: Critical Exceptions 82 ...

Chapter 32: OOP Keywords 84 ...

Section 32.1: Defining a class 84 ...
Section 32.2: Inheritance Modifiers (on classes) 84 ..
Section 32.3: Inheritance Modifiers (on properties and methods) 85 ...
Section 32.4: MyBase 86 ..
Section 32.5: Me vs MyClass 87 ...
Section 32.6: Overloading 88 ...
Section 32.7: Shadows 88 ..
Section 32.8: Interfaces 90 ...

Chapter 33: Extension methods 91 ...
Section 33.1: Creating an extension method 91 ...
Section 33.2: Making the language more functional with extension methods 91 ...
Section 33.3: Getting Assembly Version From Strong Name 91 ...
Section 33.4: Padding Numerics 92 ..

Chapter 34: Reflection 94 ...
Section 34.1: Retrieve Properties for an Instance of a Class 94 ...
Section 34.2: Get a method and invoke it 94 ...
Section 34.3: Create an instance of a generic type 94 ...
Section 34.4: Get the members of a type 94 ...

Chapter 35: Visual Basic 14.0 Features 96 ...
Section 35.1: Null conditional operator 96 ..
Section 35.2: String interpolation 96 ...
Section 35.3: Read-Only Auto-Properties 97 ...
Section 35.4: NameOf operator 97 ...
Section 35.5: Multiline string literals 98 ...
Section 35.6: Partial Modules and Interfaces 98 ...
Section 35.7: Comments after implicit line continuation 99 ...
Section 35.8: #Region directive improvements 99 ..

Chapter 36: LINQ 101 ...
Section 36.1: Selecting from array with simple condition 101 ..
Section 36.2: Mapping array by Select clause 101 ...
Section 36.3: Ordering output 101 ..
Section 36.4: Generating Dictionary From IEnumerable 101 ...
Section 36.5: Projection 102 ...
Section 36.6: Getting distinct values (using the Distinct method) 102 ..

Chapter 37: FTP server 103 ..
Section 37.1: Download file from FTP server 103 ..
Section 37.2: Download file from FTP server when login required 103 ..
Section 37.3: Upload file to FTP server 103 ...
Section 37.4: Upload file to FTP server when login required 103 ..

Chapter 38: Working with Windows Forms 104 ...
Section 38.1: Using the default Form instance 104 ...
Section 38.2: Passing Data From One Form To Another 104 ..

Chapter 39: Google Maps in a Windows Form 106 ...
Section 39.1: How to use a Google Map in a Windows Form 106 ..

Chapter 40: GDI+ 115 ..
Section 40.1: Draw Shapes 115 ...
Section 40.2: Fill Shapes 115 ...
Section 40.3: Text 116 ..
Section 40.4: Create Graphic Object 116 ...

Chapter 41: WinForms SpellCheckBox 118 ...
Section 41.1: ElementHost WPF TextBox 118 ...

Chapter 42: Using axWindowsMediaPlayer in VB.Net 122 ...
Section 42.1: Adding the axWindowsMediaPlayer 122 ...
Section 42.2: Play a Multimedia File 123 ..

Chapter 43: WPF XAML Data Binding 124 ..
Section 43.1: Binding a String in the ViewModel to a TextBox in the View 124 ..

Chapter 44: Reading compressed textfile on-the-fly 126 ...
Section 44.1: Reading .gz textfile line after line 126 ..

Chapter 45: Threading 127 ..
Section 45.1: Performing thread-safe calls using Control.Invoke() 127 ..
Section 45.2: Performing thread-safe calls using Async/Await 127 ...

Chapter 46: Multithreading 129 ...
Section 46.1: Multithreading using Thread Class 129 ..

Chapter 47: BackgroundWorker 131 ..
Section 47.1: Using BackgroundWorker 131 ..
Section 47.2: Accessing GUI components in BackgroundWorker 132 ..

Chapter 48: Using BackgroundWorker 133 ...
Section 48.1: Basic implementation of Background worker class 133 ...

Chapter 49: Task-based asynchronous pattern 134 ..
Section 49.1: Basic usage of Async/Await 134 ..
Section 49.2: Using TAP with LINQ 134 ..

Chapter 50: Debugging your application 135 ..
Section 50.1: Debug in the console 135 ..
Section 50.2: Indenting your debug output 135 ..
Section 50.3: Debug in a text file 136 ...

Chapter 51: Unit Testing in VB.NET 137 ..
Section 51.1: Unit Testing for Tax Calculation 137 ...
Section 51.2: Testing Employee Class assigned and derived Properties 138 ..

Credits 141 ..

You may also like 143 ..

GoalKicker.com – Visual Basic® .NET Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

https://goalkicker.com/VisualBasic_NETBook

This Visual Basic® .NET Notes for Professionals book is compiled from Stack
Overflow Documentation, the content is written by the beautiful people at Stack

Overflow. Text content is released under Creative Commons BY-SA, see credits at
the end of this book whom contributed to the various chapters. Images may be

copyright of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official Visual Basic® .NET group(s) or company(s) nor Stack

Overflow. All trademarks and registered trademarks are the property of their
respective company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

https://goalkicker.com/VisualBasic_NETBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 2

Chapter 1: Getting started with Visual Basic
.NET Language
VB.NET Version Visual Studio Version .NET Framework Version Release Date
7.0 2002 1.0 2002-02-13

7.1 2003 1.1 2003-04-24

8.0 2005 2.0 / 3.0 2005-10-18

9.0 2008 3.5 2007-11-19

10.0 2010 4.0 2010-04-12

11.0 2012 4.5 2012-08-15

12.0 2013 4.5.1 / 4.5.2 2013-10-17

14.0 2015 4.6.0 ~ 4.6.2 2015-07-20

15.0 2017 4.7 2017-03-07

Section 1.1: Hello World
First, install a version of Microsoft Visual Studio, including the free Community edition. Then, create a Visual Basic
Console Application project of type Console Application, and the following code will print the string 'Hello World' to
the Console:

Module Module1

 Sub Main()
 Console.WriteLine("Hello World")
 End Sub

End Module

Then, save and press F5 on the keyboard (or go to the Debug menu, then click Run without Debug or Run) to
compile and run the program. 'Hello World' should appear in the console window.

Section 1.2: Hello World on a Textbox upon Clicking of a
Button
Drag 1 textbox and 1 button

https://www.visualstudio.com/downloads/download-visual-studio-vs
http://i.stack.imgur.com/rZcqG.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 3

Double click the button1 and you will be transferred to the Button1_Click event

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 End Sub
End Class

Type the name of the object that you want to target, in our case it is the textbox1. .Text is the property that we
want to use if we want to put a text on it.

Property Textbox.Text, gets or sets the current text in the TextBox. Now, we have Textbox1.Text

We need to set the value of that Textbox1.Text so we will use the = sign. The value that we want to put in the
Textbox1.Text is Hello World. Overall, this is the total code for putting a value of Hello World to the
Textbox1.Text

TextBox1.Text = "Hello World"

Adding that code to the clicked event of button1

Public Class Form1
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 TextBox1.Text = "Hello World"
 End Sub
End Class

Section 1.3: Region
For the sake of readability, which will be useful for beginners when reading VB code as well for full time developers
to maintain the code, we can use "Region" to set a region of the same set of events, functions, or variables:

#Region "Events"
 Protected Sub txtPrice_TextChanged(...) Handles txtPrice.TextChanged
 'Do the ops here...
 End Sub

 Protected Sub txtTotal_TextChanged(...) Handles txtTotal.TextChanged
 'Do the ops here...
 End Sub

 'Some other events....

#End Region

http://i.stack.imgur.com/sgFeW.jpg
http://i.stack.imgur.com/axKMb.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 4

This region block could be collapsed to gain some visual help when the code row goes to 1000+. It is also save your
scroll efforts.

Tested on VS 2005, 2008 2010, 2015 and 2017.

Section 1.4: Creating a simple Calculator to get familiar with
the interface and code

Once you have installed Visual Studio from https://www.visualstudio.com/downloads/, start a new project.1.

2.

Select 'Windows Forms Application' from Visual Basic Tab. You can rename it here if you need to.3.

https://i.stack.imgur.com/GXRx8.png
https://www.visualstudio.com/downloads/
https://i.stack.imgur.com/AEVuZ.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 5

Once you click 'OK', you will see this window:4.

Click on the 'Toolbox' tab on the left. The toolbar has 'auto-hide' option enabled by default. To disable this5.
option, click the small symbol between the 'down arrow' symbol and the 'x' symbol, on the top-right corner of
Toolbox window.

Get yourself familiar with the tools provided in the box. I have made a calculator interface by using buttons6.
and a Textbox.

https://i.stack.imgur.com/hd4h6.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 6

Click on the Properties tab (It is on the right side of the editor). You can change the Text property of a button,7.
and the textbox to rename them. Font property can be used to alter the font of the controls.

To write the specific action for an event(eg. clicking on a button), double click on the control. Code window8.
will open.

https://i.stack.imgur.com/lJykr.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 7

VB.Net is a powerful language designed for fast development. High encapsulation and abstraction is cost for9.
it. You do not need to add semicolon to indicate the end of a statement, there are no brackets, and most of
the time, it auto-corrects the case of the alphabets.
Code provided in the picture should be simple to understand. Dim is the keyword used to initialize a variable,10.
and new allocates memory. Anything you type in the textbox is of type string by default. Casting is required to
use the value as a different type.

Enjoy your first creation in VB.Net!

https://i.stack.imgur.com/op2kd.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 8

Chapter 2: Declaring variables
Section 2.1: Declaring and assigning a variable using a
primitive type
Variables in Visual Basic are declared using the Dim keyword. For example, this declares a new variable called
counter with the data type Integer:

Dim counter As Integer

A variable declaration can also include an access modifier, such as Public, Protected, Friend, or Private. This
works in conjunction with the variable's scope to determine its accessibility.

Access Modifier Meaning
Public All types which can access the enclosing type

Protected Only the enclosing class and those that inherit from it

Friend All types in the same assembly that can access the enclosing type

Protected Friend The enclosing class and its inheritors, or the types in the same assembly that can access the
enclosing class

Private Only the enclosing type

Static Only on local variables and only initializes once.

As a shorthand, the Dim keyword can be replaced with the access modifier in the variable's declaration:

Public TotalItems As Integer
Private counter As Integer

The supported data types are outlined in the table below:

Type Alias Memory allocation Example
SByte N/A 1 byte Dim example As SByte = 10

Int16 Short 2 bytes Dim example As Short = 10

Int32 Integer 4 bytes Dim example As Integer = 10

Int64 Long 8 bytes Dim example As Long = 10

Single N/A 4 bytes Dim example As Single = 10.95

Double N/A 8 bytes Dim example As Double = 10.95

Decimal N/A 16 bytes Dim example As Decimal = 10.95

Boolean N/A Dictated by implementing platform Dim example As Boolean = True

Char N/A 2 Bytes Dim example As Char = "A"C

String N/A source Dim example As String = "Stack Overflow"

DateTime Date 8 Bytes Dim example As Date = Date.Now

Byte N/A 1 byte Dim example As Byte = 10

UInt16 UShort 2 bytes Dim example As UShort = 10

UInt32 UInteger 4 bytes Dim example As UInteger = 10

UInt64 ULong 8 bytes Dim example As ULong = 10

Object N/A 4 bytes 32 bit architecture, 8 bytes 64 bit
architecture

Dim example As Object = Nothing

There also exist data identifier and literal type characters usable in replacement for the textual type and or to force
literal type:

https://msdn.microsoft.com/en-us/library/76453kax.aspx
https://msdn.microsoft.com/en-us/library/1t0wsc67.aspx
https://msdn.microsoft.com/en-us/library/9dc6we3z.aspx
https://msdn.microsoft.com/en-us/library/8050kawf.aspx
https://msdn.microsoft.com/en-us/library/08w05ey2.aspx
https://msdn.microsoft.com/en-us/library/wx059ey1.aspx
https://msdn.microsoft.com/en-us/library/z2cty7t8.aspx
http://csharpindepth.com/Articles/General/Strings.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 9

Type (or Alias) Identifier type character Literal type character
Short N/A example = 10S

Integer Dim example% example = 10% or example = 10I

Long Dim example& example = 10& or example = 10L

Single Dim example! example = 10! or example = 10F

Double Dim example# example = 10# or example = 10R

Decimal Dim example@ example = 10@ or example = 10D

Char N/A example = "A"C

String Dim example$ N/A

UShort N/A example = 10US

UInteger N/A example = 10UI

ULong N/A example = 10UL

The integral suffixes are also usable with hexadecimal (&H) or octal (&O) prefixes:
example = &H8000S or example = &O77&

Date(Time) objects can also be defined using literal syntax:
Dim example As Date = #7/26/2016 12:8 PM#

Once a variable is declared it will exist within the Scope of the containing type, Sub or Function declared, as an
example:

Public Function IncrementCounter() As Integer
 Dim counter As Integer = 0
 counter += 1

 Return counter
End Function

The counter variable will only exist until the End Function and then will be out of scope. If this counter variable is
needed outside of the function you will have to define it at class/structure or module level.

Public Class ExampleClass

 Private _counter As Integer

 Public Function IncrementCounter() As Integer
 _counter += 1
 Return _counter
 End Function

End Class

Alternatively, you can use the Static (not to be confused with Shared) modifier to allow a local variable to retain it's
value between calls of its enclosing method:

Function IncrementCounter() As Integer
 Static counter As Integer = 0
 counter += 1

 Return counter
End Function

https://msdn.microsoft.com/en-us/library/1t0wsc67.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 10

Section 2.2: Levels of declaration – Local and Member
variables
Local variables - Those declared within a procedure (subroutine or function) of a class (or other structure). In this
example, exampleLocalVariable is a local variable declared within ExampleFunction():

Public Class ExampleClass1

 Public Function ExampleFunction() As Integer
 Dim exampleLocalVariable As Integer = 3
 Return exampleLocalVariable
 End Function

End Class

The Static keyword allows a local variable to be retained and keep its value after termination (where usually, local
variables cease to exist when the containing procedure terminates).

In this example, the console is 024. On each call to ExampleSub() from Main() the static variable retains the value it
had at the end of the previous call:

Module Module1

 Sub Main()
 ExampleSub()
 ExampleSub()
 ExampleSub()
 End Sub

 Public Sub ExampleSub()
 Static exampleStaticLocalVariable As Integer = 0
 Console.Write(exampleStaticLocalVariable.ToString)
 exampleStaticLocalVariable += 2
 End Sub

End Module

Member variables - Declared outside of any procedure, at the class (or other structure) level. They may be
instance variables, in which each instance of the containing class has its own distinct copy of that variable, or
Shared variables, which exist as a single variable associated with the class itself, independent of any instance.

Here, ExampleClass2 contains two member variables. Each instance of the ExampleClass2 has an individual
ExampleInstanceVariable which can be accessed via the class reference. The shared variable
ExampleSharedVariable however is accessed using the class name:

Module Module1

 Sub Main()

 Dim instance1 As ExampleClass4 = New ExampleClass4
 instance1.ExampleInstanceVariable = "Foo"

 Dim instance2 As ExampleClass4 = New ExampleClass4
 instance2.ExampleInstanceVariable = "Bar"

 Console.WriteLine(instance1.ExampleInstanceVariable)
 Console.WriteLine(instance2.ExampleInstanceVariable)
 Console.WriteLine(ExampleClass4.ExampleSharedVariable)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 11

 End Sub

 Public Class ExampleClass4

 Public ExampleInstanceVariable As String
 Public Shared ExampleSharedVariable As String = "FizzBuzz"

 End Class

End Module

Section 2.3: Example of Access Modifiers
In the following example consider you have a solution hosting two projects: ConsoleApplication1 and
SampleClassLibrary. The first project will have the classes SampleClass1 and SampleClass2. The second one will
have SampleClass3 and SampleClass4. In other words we have two assemblies with two classes each.
ConsoleApplication1 has a reference to SampleClassLibrary.

See how SampleClass1.MethodA interacts with other classes and methods.

SampleClass1.vb:

Imports SampleClassLibrary

Public Class SampleClass1
 Public Sub MethodA()
 'MethodA can call any of the following methods because
 'they all are in the same scope.
 MethodB()
 MethodC()
 MethodD()
 MethodE()

 'Sample2 is defined as friend. It is accessible within
 'the type itself and all namespaces and code within the same assembly.
 Dim class2 As New SampleClass2()
 class2.MethodA()
 'class2.MethodB() 'SampleClass2.MethodB is not accessible because
 'this method is private. SampleClass2.MethodB
 'can only be called from SampleClass2.MethodA,
 'SampleClass2.MethodC, SampleClass2.MethodD
 'and SampleClass2.MethodE
 class2.MethodC()
 'class2.MethodD() 'SampleClass2.MethodD is not accessible because
 'this method is protected. SampleClass2.MethodD
 'can only be called from any class that inherits
 'SampleClass2, SampleClass2.MethodA, SampleClass2.MethodC,
 'SampleClass2.MethodD and SampleClass2.MethodE
 class2.MethodE()

 Dim class3 As New SampleClass3() 'SampleClass3 resides in other
 'assembly and is defined as public.
 'It is accessible anywhere.
 class3.MethodA()
 'class3.MethodB() 'SampleClass3.MethodB is not accessible because
 'this method is private. SampleClass3.MethodB can
 'only be called from SampleClass3.MethodA,
 'SampleClass3.MethodC, SampleClass3.MethodD
 'and SampleClass3.MethodE

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 12

 'class3.MethodC() 'SampleClass3.MethodC is not accessible because
 'this method is friend and resides in another assembly.
 'SampleClass3.MethodC can only be called anywhere from the
 'same assembly, SampleClass3.MethodA, SampleClass3.MethodB,
 'SampleClass3.MethodD and SampleClass3.MethodE

 'class4.MethodD() 'SampleClass3.MethodE is not accessible because
 'this method is protected friend. SampleClass3.MethodD
 'can only be called from any class that resides inside
 'the same assembly and inherits SampleClass3,
 'SampleClass3.MethodA, SampleClass3.MethodB,
 'SampleClass3.MethodC and SampleClass3.MethodD

 'Dim class4 As New SampleClass4() 'SampleClass4 is not accessible because
 'it is defined as friend and resides in
 'other assembly.
 End Sub

 Private Sub MethodB()
 'Doing MethodB stuff...
 End Sub

 Friend Sub MethodC()
 'Doing MethodC stuff...
 End Sub

 Protected Sub MethodD()
 'Doing MethodD stuff...
 End Sub

 Protected Friend Sub MethodE()
 'Doing MethodE stuff...
 End Sub
End Class

SampleClass2.vb:

Friend Class SampleClass2
 Public Sub MethodA()
 'Doing MethodA stuff...
 End Sub

 Private Sub MethodB()
 'Doing MethodB stuff...
 End Sub

 Friend Sub MethodC()
 'Doing MethodC stuff...
 End Sub

 Protected Sub MethodD()
 'Doing MethodD stuff...
 End Sub

 Protected Friend Sub MethodE()
 'Doing MethodE stuff...
 End Sub
End Class

SampleClass3.vb:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 13

Public Class SampleClass3
 Public Sub MethodA()
 'Doing MethodA stuff...
 End Sub
 Private Sub MethodB()
 'Doing MethodB stuff...
 End Sub

 Friend Sub MethodC()
 'Doing MethodC stuff...
 End Sub

 Protected Sub MethodD()
 'Doing MethodD stuff...
 End Sub

 Protected Friend Sub MethodE()
 'Doing MethodE stuff...
 End Sub
End Class

SampleClass4.vb:

Friend Class SampleClass4
 Public Sub MethodA()
 'Doing MethodA stuff...
 End Sub
 Private Sub MethodB()
 'Doing MethodB stuff...
 End Sub

 Friend Sub MethodC()
 'Doing MethodC stuff...
 End Sub

 Protected Sub MethodD()
 'Doing MethodD stuff...
 End Sub

 Protected Friend Sub MethodE()
 'Doing MethodE stuff...
 End Sub
End Class

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 14

Chapter 3: Introduction to Syntax
Section 3.1: Intellisense Helper
One interesting thing is the ability to add you own comments into Visual Studio Intellisense. So you can make your
own written functions and classes self-explanatory. To do so, you must type the comment symbol three times the
line above your function.

Once done, Visual Studio will automatically add an XML documentation :

''' <summary>
''' This function returns a hello to your name
''' </summary>
''' <param name="Name">Your Name</param>
''' <returns></returns>
''' <remarks></remarks>
Public Function Test(Name As String) As String
 Return "Hello " & Name
End Function

After that, if you type in your Test function somewhere in your code, this little help will show up :

Section 3.2: Declaring a Variable
In VB.NET, every variable must be declared before it is used (If Option Explicit is set to On). There are two ways of
declaring variables:

Inside a Function or a Sub:

Dim w 'Declares a variable named w of type Object (invalid if Option Strict is On)
Dim x As String 'Declares a variable named x of type String
Dim y As Long = 45 'Declares a variable named y of type Long and assigns it the value 45
Dim z = 45 'Declares a variable named z whose type is inferred
 'from the type of the assigned value (Integer here) (if Option Infer is On)
 'otherwise the type is Object (invalid if Option Strict is On)
 'and assigns that value (45) to it

See this answer for full details about Option Explicit, Strict and Infer.

Inside a Class or a Module:

These variables (also called fields in this context) will be accessible for each instance of the Class they are declared
in. They might be accessible from outside the declared Class depending on the modifier (Public, Private,
Protected, Protected Friend or Friend)

Private x 'Declares a private field named x of type Object (invalid if Option Strict is On)
Public y As String 'Declares a public field named y of type String
Friend z As Integer = 45 'Declares a friend field named z of type Integer and assigns it the value
45

http://i.stack.imgur.com/0RsEi.png
https://msdn.microsoft.com/en-us/library/y9341s4f.aspx
http://stackoverflow.com/a/2489467/256431
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 15

These fields can also be declared with Dim but the meaning changes depending on the enclosing type:

Class SomeClass
 Dim z As Integer = 45 ' Same meaning as Private z As Integer = 45
End Class

Structure SomeStructure
 Dim y As String ' Same meaning as Public y As String
End Structure

Section 3.3: Comments
The first interesting thing to know is how to write comments.

In VB .NET, you write a comment by writing an apostrophe ' or writing REM. This means the rest of the line will not
be taken into account by the compiler.

'This entire line is a comment
Dim x As Integer = 0 'This comment is here to say we give 0 value to x

REM There are no such things as multiline comments
'So we have to start everyline with the apostrophe or REM

Section 3.4: Modifiers
Modifiers are a way to indicate how external objects can access an object's data.

Public

Means any object can access this without restriction

Private

Means only the declaring object can access and view this

Protected

Means only the declaring object and any object that inherits from it can access and view this.

Friend

Means only the delcaring object, any object that inherits from it and any object in the same namespace can access
and view this.

Public Class MyClass
 Private x As Integer

 Friend Property Hello As String

 Public Sub New()
 End Sub

 Protected Function Test() As Integer
 Return 0
 End Function
End Class

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 16

Section 3.5: Object Initializers
Named Types

 Dim someInstance As New SomeClass(argument) With {
 .Member1 = value1,
 .Member2 = value2
 '...
 }

Is equivalent to

 Dim someInstance As New SomeClass(argument)
 someInstance.Member1 = value1
 someInstance.Member2 = value2
 '...

Anonymous Types (Option Infer must be On)

 Dim anonymousInstance = New With {
 .Member1 = value1,
 .Member2 = value2
 '...
 }

Although similar anonymousInstance doesn't have same type as someInstance

Member name must be unique in the anonymous type, and can be taken from a variable or another object
member name

 Dim anonymousInstance = New With {
 value1,
 value2,
 foo.value3
 '...
 }
 ' usage : anonymousInstance.value1 or anonymousInstance.value3

Each member can be preceded by the Key keyword. Those members will be ReadOnly properties, those
without will be read/write properties

 Dim anonymousInstance = New With {
 Key value1,
 .Member2 = value2,
 Key .Member3 = value3
 '...
 }

Two anonymous instance defined with the same members (name, type, presence of Key and order) will have
the same anonymous type.

 Dim anon1 = New With { Key .Value = 10 }
 Dim anon2 = New With { Key .Value = 20 }

 anon1.GetType Is anon2.GetType ' True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 17

Anonymous types are structurally equatable. Two instance of the same anonymous types having at least one
Key property with the same Key values will be equal. You have to use Equals method to test it, using = won't
compile and Is will compare the object reference.

 Dim anon1 = New With { Key .Name = "Foo", Key .Age = 10, .Salary = 0 }
 Dim anon2 = New With { Key .Name = "Bar", Key .Age = 20, .Salary = 0 }
 Dim anon3 = New With { Key .Name = "Foo", Key .Age = 10, .Salary = 10000 }

 anon1.Equals(anon2) ' False
 anon1.Equals(anon3) ' True although non-Key Salary isn't the same

Both Named and Anonymous types initializer can be nested and mixed

 Dim anonymousInstance = New With {
 value,
 Key .someInstance = New SomeClass(argument) With {
 .Member1 = value1,
 .Member2 = value2
 '...
 }
 '...
 }

Section 3.6: Collection Initializer
Arrays

 Dim names = {"Foo", "Bar"} ' Inferred as String()
 Dim numbers = {1, 5, 42} ' Inferred as Integer()

Containers (List(Of T), Dictionary(Of TKey, TValue), etc.)

 Dim names As New List(Of String) From {
 "Foo",
 "Bar"
 '...
 }

 Dim indexedDays As New Dictionary(Of Integer, String) From {
 {0, "Sun"},
 {1, "Mon"}
 '...
 }

Is equivalent to

 Dim indexedDays As New Dictionary(Of Integer, String)
 indexedDays.Add(0, "Sun")
 indexedDays.Add(1, "Mon")
 '...

Items can be the result of a constructor, a method call, a property access. It can also be mixed with Object
initializer.

 Dim someList As New List(Of SomeClass) From {
 New SomeClass(argument),

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 18

 New SomeClass With { .Member = value },
 otherClass.PropertyReturningSomeClass,
 FunctionReturningSomeClass(arguments)
 '...
 }

It is not possible to use Object initializer syntax AND collection initializer syntax for the same object at the
same time. For example, these won't work

 Dim numbers As New List(Of Integer) With {.Capacity = 10} _
 From { 1, 5, 42 }

 Dim numbers As New List(Of Integer) From {
 .Capacity = 10,
 1, 5, 42
 }

 Dim numbers As New List(Of Integer) With {
 .Capacity = 10,
 1, 5, 42
 }

Custom Type

We can also allow collection initializer syntax by providing for a custom type.
It must implement IEnumerable and have an accessible and compatible by overload rules Add method
(instance, Shared or even extension method)

Contrived example :

 Class Person
 Implements IEnumerable(Of Person) ' Inherits from IEnumerable

 Private ReadOnly relationships As List(Of Person)

 Public Sub New(name As String)
 relationships = New List(Of Person)
 End Sub

 Public Sub Add(relationName As String)
 relationships.Add(New Person(relationName))
 End Sub

 Public Iterator Function GetEnumerator() As IEnumerator(Of Person) _
 Implements IEnumerable(Of Person).GetEnumerator

 For Each relation In relationships
 Yield relation
 Next
 End Function

 Private Function IEnumerable_GetEnumerator() As IEnumerator _
 Implements IEnumerable.GetEnumerator

 Return GetEnumerator()
 End Function
 End Class

 ' Usage

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 19

 Dim somePerson As New Person("name") From {
 "FriendName",
 "CoWorkerName"
 '...
 }

If we wanted to add Person object to a List(Of Person) by just putting the name in the collection initializer
(but we can't modify the List(Of Person) class) we can use an Extension method

 ' Inside a Module
 <Runtime.CompilerServices.Extension>
 Sub Add(target As List(Of Person), name As String)
 target.Add(New Person(name))
 End Sub

 ' Usage
 Dim people As New List(Of Person) From {
 "Name1", ' no need to create Person object here
 "Name2"
 }

Section 3.7: Writing a function
A function is a block of code that will be called several times during the execution. Instead of writing the same piece
of code again and again, one can write this code inside a function and call that function whenever it is needed.

A function :

Must be declared in a class or a module
Returns a value (specified by the return type)
Has a modifier
Can take parameters to do its processing

Private Function AddNumbers(X As Integer, Y As Integer) As Integer
 Return X + Y
End Function

A Function Name, could be used as the return statement

Function sealBarTypeValidation() as Boolean
 Dim err As Boolean = False

 If rbSealBarType.SelectedValue = "" Then
 err = True
 End If

 Return err
End Function

is just the same as

Function sealBarTypeValidation() as Boolean
 sealBarTypeValidation = False

 If rbSealBarType.SelectedValue = "" Then
 sealBarTypeValidation = True
 End If

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 20

End Function

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 21

Chapter 4: Operators
Section 4.1: String Concatenation
String concatenation is when you combine two or more strings into a single string variable.

String concatenation is performed with the & symbol.

Dim one As String = "Hello "
Dim two As String = "there"
Dim result As String = one & two

Non-string values will be converted to string when using & .

Dim result as String = "2" & 10 ' result = "210"

Always use & (ampersand) to perform string concatenation.

DON'T DO THIS
While it is possible, in the simplest of cases, to use the + symbol to do string concatenation, you should never do
this. If one side of the plus symbol is not a string, when Option strict is off, the behavior becomes non-intuitive,
when Option strict is on it will produce a compiler error. Consider:

Dim value = "2" + 10 ' result = 12 (data type Double)
Dim value = "2" + "10" ' result = "210" (data type String)
Dim value = "2g" + 10 ' runtime error

The problem here is that if the + operator sees any operand that is a numeric type, it will presume that the
programmer wanted to perform an arithmetic operation and attempt to cast the other operand to the equivalent
numeric type. In cases where the other operand is a string that contains a number (for example, "10"), the string is
converted to a number and then arithmetically added to the other operand. If the other operand cannot be
converted to a number (for example, "2g"), the operation will crash due to a data conversion error. The + operator
will only perform string concatenation if both operands are of String type.

The & operator, however, is designed for string concatenation and will cast non-string types to strings.

Section 4.2: Math
If you have the following variables

Dim leftValue As Integer = 5
Dim rightValue As Integer = 2
Dim value As Integer = 0

Addition Performed by the plus sign + .

value = leftValue + rightValue

'Output the following:
'7

Subtraction Performed by the minus sign - .

value = leftValue - rightValue

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 22

'Output the following:
'3

Multiplication Performed by the star symbol * .

value = leftValue * rightValue

'Output the following:
'10

Division Performed by the forward slash symbol / .

value = leftValue / rightValue

'Output the following:
'2.5

Integer Division Performed by the backslash symbol \ .

value = leftValue \ rightValue

'Output the following:
'2

Modulus Performed by the Mod keyword.

value = leftValue Mod rightValue

'Output the following:
'1

Raise to a Power of Performed by the ^ symbol.

value = leftValue ^ rightValue

'Output the following:
'25

Section 4.3: Assignment
There is a single assignment operator in VB.

The equal sign = is used both for equality comparison and assignment.
Dim value = 5

Notes
Watch out for assignment vs. equality comparison.

Dim result = leftValue = rightValue

In this example you can see the equal sign being used as both a comparison operator and an assignment operator,
unlike other languages. In this case, result will be of type Boolean and will contain the value of the equality
comparison between leftValue and rightValue.

Related: Using Option Strict On to declare variables properly

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 23

Section 4.4: Comparison
Comparison operators compare two values and return to you a boolean (True or False) as the result.

Equality

The equal sign = is used both for equality comparison and assignment.
If leftValue = rightValue Then ...

Inequality

The left angle bracket nest to the right angle bracket <> performs an unequal comparison.
If leftValue <> rightValue Then ...

Greater Than

The left angle bracket < performs a greater than comparison.
If leftValue < rightValue Then ...

Greater Than Or Equal

The equal sign nest to the left angle bracket => performs a greater than or equals comparison.
If leftValue =< rightValue Then ...

Less Than

The right angle bracket > performs a less than comparison.
If leftValue > rightValue Then ...

Less Than Or Equal

The equal sign nest to the right angle bracket => performs a greater than or equals comparison.
If leftValue => rightValue Then ...

Like

The Like operator tests the equality of a string and a search pattern.
The Like operator relies on the Option Compare Statement
The following table lists the available patterns. Source:
https://msdn.microsoft.com/en-us/library/swf8kaxw.aspx (Remarks section)

Characters in the Pattern Matches in the String
? Any single character

* Zero or more characters

Any single digit (0 - 9)

[charlist] Any single character in charlist

[!charlist] Any single character not in charlist

See further info on MSDN in the remarks section.
If string Like pattern Then ...

Section 4.5: Bitwise
These are the bitwise operators in VB.NET : And, Or, Xor, Not

https://msdn.microsoft.com/en-us/library/8t3khw5f.aspx
https://msdn.microsoft.com/en-us/library/swf8kaxw.aspx
https://msdn.microsoft.com/en-us/library/swf8kaxw.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 24

Example of And bitwise operation

Dim a as Integer
a = 3 And 5

The value of a will be 1. The result is obtained after comparing 3 and 5 in binary for. 3 in binary form is 011 and 5 in
binary form is 101. The And operator places 1 if both bits are 1. If any of the bits are 0 then the value will be 0

3 And 5 will be 011
 101

 001

So the binary result is 001 and when that is converted to decimal, the answer will be 1.

Or operator places 1 if both or one bit is 1

 3 Or 5 will be 011
 101

 111

Xor operator places 1 if only one of the bit is 1 (not both)

 3 Xor 5 will be 011
 101

 110

Not operator reverts the bits including sign

Not 5 will be - 010

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 25

Chapter 5: Conditions
Section 5.1: If operator
Version ≥ 9.0

If(condition > value, "True", "False")

We can use the If operator instead of If...Then...Else..End If statement blocks.

Consider the following example:

If 10 > 9 Then
 MsgBox("True")
Else
 MsgBox("False")
End If

is the same as

MsgBox(If(10 > 9, "True", "False"))

If() uses short-circuit evaluation, which means that it will only evaluate the arguments it uses. If the condition is
false (or a Nullable that is Nothing), the first alternative will not be evaluated at all, and none of its side effects will
be observed. This is effectively the same as C#'s ternary operator in the form of condition?a:b.

This is especially useful in avoiding exceptions:

Dim z As Integer = If(x = 0, 0, y/x)

We all know that dividing by zero will throw an exception, but If() here guards against this by short-circuiting to
only the expression that the condition has already ensured is valid.

Another example:

Dim varDate as DateTime = If(varString <> "N/A", Convert.ToDateTime(varString), Now.Date)

If varString <> "N/A" evaluates to False, it will assign varDate's value as Now.Date without evaluating the first
expression.

Version < 9.0

Older versions of VB do not have the If() operator and have to make do with the IIf() built-in function. As it's a
function, not an operator, it does not short-circuit; all expressions are evaluated, with all possible side-effects,
including performance penalties, changing state, and throwing exceptions. (Both of the above examples that avoid
exceptions would throw if converted to IIf.) If any of these side effects present a problem, there's no way to use an
inline conditional; instead, rely on If..Then blocks as usual.

Section 5.2: IF...Then...Else
Dim count As Integer = 0
Dim message As String

If count = 0 Then

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 26

 message = "There are no items."
ElseIf count = 1 Then
 message = "There is 1 item."
Else
 message = "There are " & count & " items."
End If

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 27

Chapter 6: Short-Circuiting Operators
(AndAlso - OrElse)
Parameter Details

result Required. Any Boolean expression. The result is the Boolean result of comparison of the two
expressions.

expression1 Required. Any Boolean expression.

expression2 Required. Any Boolean expression.

Section 6.1: OrElse Usage
' The OrElse operator is the homologous of AndAlso. It lets us perform a boolean
' comparison evaluating the second condition only if the first one is False

If testFunction(5) = True OrElse otherFunction(4) = True Then
 ' If testFunction(5) is True, otherFunction(4) is not called.
 ' Insert code to be executed.
End If

Section 6.2: AndAlso Usage
' Sometimes we don't need to evaluate all the conditions in an if statement's boolean check.

' Let's suppose we have a list of strings:

Dim MyCollection as List(Of String) = New List(of String)()

' We want to evaluate the first value inside our list:

If MyCollection.Count > 0 And MyCollection(0).Equals("Somevalue")
 Console.WriteLine("Yes, I've found Somevalue in the collection!")
End If

' If MyCollection is empty, an exception will be thrown at runtime.
' This because it evaluates both first and second condition of the
' if statement regardless of the outcome of the first condition.

' Now let's apply the AndAlso operator

If MyCollection.Count > 0 AndAlso MyCollection(0).Equals("Somevalue")
 Console.WriteLine("Yes, I've found Somevalue in the collection!")
End If

' This won't throw any exception because the compiler evaluates just the first condition.
' If the first condition returns False, the second expression isn't evaluated at all.

Section 6.3: Avoiding NullReferenceException
Version ≥ 7.0

OrElse
Sub Main()
 Dim elements As List(Of Integer) = Nothing

 Dim average As Double = AverageElementsOrElse(elements)
 Console.WriteLine(average) ' Writes 0 to Console

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 28

 Try
 'Throws ArgumentNullException
 average = AverageElementsOr(elements)
 Catch ex As ArgumentNullException
 Console.WriteLine(ex.Message)
 End Try
End Sub

Public Function AverageElementsOrElse(ByVal elements As IEnumerable(Of Integer)) As Double
 ' elements.Count is not called if elements is Nothing so it cannot crash
 If (elements Is Nothing OrElse elements.Count = 0) Then
 Return 0
 Else
 Return elements.Average()
 End If
End Function

Public Function AverageElementsOr(ByVal elements As IEnumerable(Of Integer)) As Double
 ' elements.Count is always called so it can crash if elements is Nothing
 If (elements Is Nothing Or elements.Count = 0) Then
 Return 0
 Else
 Return elements.Average()
 End If
End Function
Version ≥ 7.0

AndAlso
Sub Main()
 Dim elements As List(Of Integer) = Nothing

 Dim average As Double = AverageElementsAndAlso(elements)
 Console.WriteLine(average) ' Writes 0 to Console

 Try
 'Throws ArgumentNullException
 average = AverageElementsAnd(elements)
 Catch ex As ArgumentNullException
 Console.WriteLine(ex.Message)
 End Try
End Sub

Public Function AverageElementsAndAlso(ByVal elements As IEnumerable(Of Integer)) As Double
 ' elements.Count is not called if elements is Nothing so it cannot crash
 If (Not elements Is Nothing AndAlso elements.Count > 0) Then
 Return elements.Average()
 Else
 Return 0
 End If
End Function

Public Function AverageElementsAnd(ByVal elements As IEnumerable(Of Integer)) As Double
 ' elements.Count is always called so it can crash if elements is Nothing
 If (Not elements Is Nothing And elements.Count > 0) Then
 Return elements.Average()
 Else
 Return 0
 End If
End Function
Version ≥ 14.0

Visual Basic 14.0 introduced the null conditional operator, allowing to rewrite the functions in a cleaner way,

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 29

mimicking the behavior of the AndAlso version of the example.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 30

Chapter 7: Date
Section 7.1: Converting (Parsing) a String to a Date
If you know the format of the string you are converting (parsing) you should use DateTime.ParseExact

Dim dateString As String = "12.07.2003"
Dim dateFormat As String = "dd.MM.yyyy"
Dim dateValue As Date

dateValue = DateTime.ParseExact(dateString, dateFormat, Globalization.CultureInfo.InvariantCulture)

If you are not certain for the format of the string, you can use DateTime.TryParseExact and test the result to see if
parsed or not:

Dim dateString As String = "23-09-2013"
Dim dateFormat As String = "dd-MM-yyyy"
Dim dateValue As Date

If DateTime.TryParseExact(dateString, dateFormat, Globalization.CultureInfo.InvariantCulture,
DateTimeStyles.None, dateValue) Then
 'the parse worked and the dateValue variable now holds the datetime that was parsed as it is
passing in ByRef
Else
 'the parse failed
End If

Section 7.2: Converting a Date To A String
Simply use the .ToString overload of a DateTime object to get the format you require:

Dim dateValue As DateTime = New DateTime(2001, 03, 06)
Dim dateString As String = dateValue.ToString("yyyy-MM-dd") '2001-03-06

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 31

Chapter 8: Array
Section 8.1: Array definition
Dim array(9) As Integer ' Defines an array variable with 10 Integer elements (0-9).

Dim array = New Integer(10) {} ' Defines an array variable with 11 Integer elements (0-10)
 'using New.

Dim array As Integer() = {1, 2, 3, 4} ' Defines an Integer array variable and populate it
 'using an array literal. Populates the array with
 '4 elements.

ReDim Preserve array(10) ' Redefines the size of an existing array variable preserving any
 'existing values in the array. The array will now have 11 Integer
 'elements (0-10).

ReDim array(10) ' Redefines the size of an existing array variable discarding any
 'existing values in the array. The array will now have 11 Integer
 'elements (0-10).

Zero-Based

All arrays in VB.NET are zero-based. In other words, the index of the first item (the lower bound) in a VB.NET array is
always 0. Older versions of VB, such as VB6 and VBA, were one-based by default, but they provided a way to
override the default bounds. In those earlier versions of VB, the lower and upper bounds could be explicitly stated
(e.g. Dim array(5 To 10). In VB.NET, in order to maintain compatibility with other .NET languages, that flexibility
was removed and the lower bound of 0 is now always enforced. However, the To syntax can still be used in VB.NET,
which may make the range more explicitly clear. For instance, the following examples are all equivalent to the ones
listed above:

Dim array(0 To 9) As Integer

Dim array = New Integer(0 To 10) {}

ReDim Preserve array(0 To 10)

ReDim array(0 To 10)

Nested Array Declarations

Dim myArray = {{1, 2}, {3, 4}}

Section 8.2: Null Array Variables
Since arrays are reference types, an array variable can be null. To declare a null array variable, you must declare it
without a size:

Dim array() As Integer

Or

Dim array As Integer()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 32

To check if an array is null, test to see if it Is Nothing:

Dim array() As Integer
If array Is Nothing Then
 array = {1, 2, 3}
End If

To set an existing array variable to null, simply set it to Nothing:

Dim array() As Integer = {1, 2, 3}
array = Nothing
Console.WriteLine(array(0)) ' Throws a NullReferenceException

Or use Erase, which does the same thing:

Dim array() As Integer = {1, 2, 3}
Erase array
Console.WriteLine(array(0)) ' Throws a NullReferenceException

Section 8.3: Array initialization
Dim array() As Integer = {2, 0, 1, 6} ''Initialize an array of four Integers.
Dim strings() As String = {"this", "is", "an", "array"} ''Initialize an array of four Strings.
Dim floats() As Single = {56.2, 55.633, 1.2, 5.7743, 22.345}
 ''Initialize an array of five Singles, which are the same as floats in C#.
Dim miscellaneous() as Object = { New Object(), "Hello", New List(of String) }
 ''Initialize an array of three references to any reference type objects
 ''and point them to objects of three different types.

Section 8.4: Declare a single-dimension array and set array
element values
Dim array = New Integer() {1, 2, 3, 4}

or

Dim array As Int32() = {1, 2, 3, 4}

Section 8.5: Jagged Array Initialization
Note the parenthesis to distinguish between a jagged array and a multidimensional array SubArrays can be of
different length

Dim jaggedArray()() As Integer = { ({1, 2, 3}), ({4, 5, 6}), ({7}) }
' jaggedArray(0) is {1, 2, 3} and so jaggedArray(0)(0) is 1
' jaggedArray(1) is {4, 5, 6} and so jaggedArray(1)(0) is 4
' jaggedArray(2) is {7} and so jaggedArray(2)(0) is 7

Section 8.6: Non-zero lower bounds
With Option Strict On, although the .NET Framework allows the creation of single dimension arrays with non-zero
lower bounds they are not "vectors" and so not compatible with VB.NET typed arrays. This means they can only be
seen as Array and so cannot use normal array (index) references.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 33

Dim a As Array = Array.CreateInstance(GetType(Integer), {4}, {-1})
For y = LBound(a) To UBound(a)
 a.SetValue(y * y, y)
Next
For y = LBound(a) To UBound(a)
 Console.WriteLine($"{y}: {a.GetValue(y)}")
Next

As well as by using Option Strict Off, you can get the (index) syntax back by treating the array as an IList, but
then it's not an array, so you can't use LBound and UBound on that variable name (and you're still not avoiding
boxing):

Dim nsz As IList = a
For y = LBound(a) To UBound(a)
 nsz(y) = 2 - CInt(nsz(y))
Next
For y = LBound(a) To UBound(a)
 Console.WriteLine($"{y}: {nsz(y)}")
Next

Multi-dimensional non-zero lower bounded arrays are compatible with VB.NET multi-dimensional typed arrays:

Dim nza(,) As Integer = DirectCast(Array.CreateInstance(GetType(Integer),
 {4, 3}, {1, -1}), Integer(,))
For y = LBound(nza) To UBound(nza)
 For w = LBound(nza, 2) To UBound(nza, 2)
 nza(y, w) = -y * w + nza(UBound(nza) - y + LBound(nza),
 UBound(nza, 2) - w + LBound(nza, 2))
 Next
Next
For y = LBound(nza) To UBound(nza)
 Dim ly = y
 Console.WriteLine(String.Join(" ",
 Enumerable.Repeat(ly & ":", 1).Concat(
 Enumerable.Range(LBound(nza, 2), UBound(nza, 2) - LBound(nza, 2) + 1) _
 .Select(Function(w) CStr(nza(ly, w))))))
Next

MSDN reference: Array.CreateInstance

Section 8.7: Referencing Same Array from Two Variables
Since arrays are reference types, it is possible to have multiple variables pointing to the same array object.

Dim array1() As Integer = {1, 2, 3}
Dim array2() As Integer = array1
array1(0) = 4
Console.WriteLine(String.Join(", ", array2)) ' Writes "4, 2, 3"

Section 8.8: Multidimensional Array initialization
Dim array2D(,) As Integer = {{1, 2, 3}, {4, 5, 6}}
' array2D(0, 0) is 1 ; array2D(0, 1) is 2 ; array2D(1, 0) is 4

Dim array3D(,,) As Integer = {{{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}}
' array3D(0, 0, 0) is 1 ; array3D(0, 0, 1) is 2
' array3D(0, 1, 0) is 4 ; array3D(1, 0, 0) is 7

https://msdn.microsoft.com/en-us/library/x836773a.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 34

Chapter 9: Lists
Section 9.1: Add items to a List
Dim aList as New List(Of Integer)
aList.Add(1)
aList.Add(10)
aList.Add(1001)

To add more than one item at a time use AddRange. Always adds to the end of the list

Dim blist as New List(of Integer)
blist.AddRange(alist)

Dim aList as New List(of String)
alist.AddRange({"one", "two", "three"})

In order to add items to the middle of the list use Insert

Insert will place the item at the index, and renumber the remaining items

Dim aList as New List(Of String)
aList.Add("one")
aList.Add("three")
alist(0) = "one"
alist(1) = "three"
alist.Insert(1,"two")

New Output:

alist(0) = "one"
alist(1) = "two"
alist(2) = "three"

Section 9.2: Check if item exists in a List
 Sub Main()
 Dim People = New List(Of String)({"Bob Barker", "Ricky Bobby", "Jeff Bridges"})
 Console.WriteLine(People.Contains("Rick James"))
 Console.WriteLine(People.Contains("Ricky Bobby"))
 Console.WriteLine(People.Contains("Barker"))
 Console.Read
 End Sub

Produces the following output:

False
True
False

Section 9.3: Loop through items in list
Dim aList as New List(Of String)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 35

aList.Add("one")
aList.Add("two")
aList.Add("three")

For Each str As String in aList
 System.Console.WriteLine(str)
Next

Produces the following output:

one
two
three

Another option, would be to loop through using the index of each element:

Dim aList as New List(Of String)
aList.Add("one")
aList.Add("two")
aList.Add("three")

For i = 0 to aList.Count - 1 'We use "- 1" because a list uses 0 based indexing.
 System.Console.WriteLine(aList(i))
Next

Section 9.4: Create a List
Lists can populated with any data type as necessary, with the format

Dim aList as New List(Of Type)

For example:

Create a new, empty list of Strings

Dim aList As New List(Of String)

Create a new list of strings, and populate with some data

VB.NET 2005/2008:

Dim aList as New List(Of String)(New String() {"one", "two", "three"})

VB.NET 2010:

Dim aList as New List(Of String) From {"one", "two", "three"}

--

VB.NET 2015:

Dim aList as New List(Of String)(New String() {"one", "two", "three"})

NOTE:

If you are receiving the following when the code is ran:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 36

Object reference not set to an instance of an object.

Make sure you either declare as New i.e. Dim aList as New List(Of String) or if declaring without the New, make
sure you set the list to a new list - Dim aList as List(Of String) = New List(Of String)

Section 9.5: Remove items from a List
Dim aList As New List(Of String)
aList.Add("Hello")
aList.Add("Delete Me!")
aList.Add("World")

'Remove the item from the list at index 1
aList.RemoveAt(1)

'Remove a range of items from a list, starting at index 0, for a count of 1)
'This will remove index 0, and 1!
aList.RemoveRange(0, 1)

'Clear the entire list
alist.Clear()

Section 9.6: Retrieve items from a List
Dim aList as New List(Of String)
aList.Add("Hello, World")
aList.Add("Test")

Dim output As String = aList(0)

output:

Hello, World

If you do not know the index of the item or only know part of the string then use the Find or FindAll method

Dim aList as New List(Of String)
aList.Add("Hello, World")
aList.Add("Test")

Dim output As String = aList.Find(Function(x) x.StartWith("Hello"))

output:

Hello, World

The FindAll method returns a new List (of String)

Dim aList as New List(Of String)
aList.Add("Hello, Test")
aList.Add("Hello, World")
aList.Add("Test")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 37

Dim output As String = aList.FindAll(Function(x) x.Contains("Test"))

output(0) = "Hello, Test"

output(1) = "Test"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 38

Chapter 10: Enum
Section 10.1: GetNames()
Returns the names of constants in the specified Enum as a string array:

Module Module1

 Enum Size
 Small
 Medium
 Large
 End Enum

 Sub Main()
 Dim sizes = [Enum].GetNames(GetType(Size))

 For Each size In sizes
 Console.WriteLine(size)
 Next
 End Sub

End Module

Output:

Small

Medium

Large

Section 10.2: HasFlag()
The HasFlag() method can be used to check if a flag is set.

Module Module1

 <Flags>
 Enum Material
 Wood = 1
 Plastic = 2
 Metal = 4
 Stone = 8
 End Enum

 Sub Main()
 Dim houseMaterials As Material = Material.Wood Or Material.Stone

 If houseMaterials.HasFlag(Material.Stone) Then
 Console.WriteLine("the house is made of stone")
 Else
 Console.WriteLine("the house is not made of stone")
 End If
 End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 39

End Module

For more information about the Flags-attribute and how it should be used see the official Microsoft documentation.

Section 10.3: Enum definition
An enum is a set of logically related constants.

Enum Size
 Small
 Medium
 Large
End Enum

Public Sub Order(shirtSize As Size)
 Select Case shirtSize
 Case Size.Small
 ' ...
 Case Size.Medium
 ' ...
 Case Size.Large
 ' ...
 End Select
End Sub

Section 10.4: Member initialization
Each of the enum members may be initialized with a value. If a value is not specified for a member, by default it's
initialized to 0 (if it's the first member in the member list) or to a value greater by 1 than the value of the preceding
member.

Module Module1

 Enum Size
 Small
 Medium = 3
 Large
 End Enum

 Sub Main()
 Console.WriteLine(Size.Small) ' prints 0
 Console.WriteLine(Size.Medium) ' prints 3
 Console.WriteLine(Size.Large) ' prints 4

 ' Waits until user presses any key
 Console.ReadKey()
 End Sub

End Module

Section 10.5: The Flags attribute
With the <Flags> attribute, the enum becomes a set of flags. This attribute enables assigning multiple values to an
enum variable. The members of a flags enum should be initialized with powers of 2 (1, 2, 4, 8...).

Module Module1

 <Flags>

https://msdn.microsoft.com/en-us/library/system.flagsattribute(v=vs.110).aspx#Anchor_6
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 40

 Enum Material
 Wood = 1
 Plastic = 2
 Metal = 4
 Stone = 8
 End Enum

 Sub Main()
 Dim houseMaterials As Material = Material.Wood Or Material.Stone
 Dim carMaterials as Material = Material.Plastic Or Material.Metal
 Dim knifeMaterials as Material = Material.Metal

 Console.WriteLine(houseMaterials.ToString()) 'Prints "Wood, Stone"
 Console.WriteLine(CType(carMaterials, Integer)) 'Prints 6
 End Sub

End Module

Section 10.6: GetValues()
' This method is useful for iterating Enum values '

Enum Animal
 Dog = 1
 Cat = 2
 Frog = 4
End Enum

Dim Animals = [Enum].GetValues(GetType(Animal))

For Each animal in Animals
 Console.WriteLine(animal)
Next

Prints:

1

2

4

Section 10.7: String parsing
An Enum instance can be created by parsing a string representation of the Enum.

Module Module1

 Enum Size
 Small
 Medium
 Large
 End Enum

 Sub Main()
 Dim shirtSize As Size = DirectCast([Enum].Parse(GetType(Size), "Medium"), Size)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 41

 ' Prints 'Medium'
 Console.WriteLine(shirtSize.ToString())

 ' Waits until user presses any key
 Console.ReadKey()
 End Sub

End Module

See also: Parse a string to an Enum value in VB.NET

Section 10.8: ToString()
The ToString method on an enum returns the string name of the enumeration. For instance:

Module Module1
 Enum Size
 Small
 Medium
 Large
 End Enum

 Sub Main()
 Dim shirtSize As Size = Size.Medium
 Dim output As String = shirtSize.ToString()
 Console.WriteLine(output) ' Writes "Medium"
 End Sub
End Module

If, however, the string representation of the actual integer value of the enum is desired, you can cast the enum to
an Integer and then call ToString:

Dim shirtSize As Size = Size.Medium
Dim output As String = CInt(shirtSize).ToString()
Console.WriteLine(output) ' Writes "1"

Section 10.9: Determine whether a Enum has FlagsAttribute
specified or not
The next example can be used to determine whether a enumeration has the FlagsAttribute specified. The
methodology used is based on Reflection.

This example will give a True result:

Dim enu As [Enum] = New FileAttributes()
Dim hasFlags As Boolean = enu.GetType().GetCustomAttributes(GetType(FlagsAttribute),
inherit:=False).Any()
Console.WriteLine("{0} Enum has FlagsAttribute?: {1}", enu.GetType().Name, hasFlags)

This example will give a False result:

Dim enu As [Enum] = New ConsoleColor()
Dim hasFlags As Boolean = enu.GetType().GetCustomAttributes(GetType(FlagsAttribute),
inherit:=False).Any()
Console.WriteLine("{0} Enum has FlagsAttribute?: {1}", enu.GetType().Name, hasFlags)

We can design a generic usage extension method like this one:

http://stackoverflow.com/questions/852141/parse-a-string-to-an-enum-value-in-vb-net/852156#852156
https://msdn.microsoft.com/en-us/library/system.flagsattribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/f7ykdhsy(v=vs.110).aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 42

<DebuggerStepThrough>
<Extension>
<EditorBrowsable(EditorBrowsableState.Always)>
Public Function HasFlagsAttribute(ByVal sender As [Enum]) As Boolean
 Return sender.GetType().GetCustomAttributes(GetType(FlagsAttribute), inherit:=False).Any()
End Function

Usage Example:

Dim result As Boolean = (New FileAttributes).HasFlagsAttribute()

Section 10.10: For-each flag (flag iteration)
In some very specific scenarios we would feel the need to perform a specific action for each flag of the source
enumeration.

We can write a simple Generic extension method to realize this task.

<DebuggerStepThrough>
<Extension>
<EditorBrowsable(EditorBrowsableState.Always)>
Public Sub ForEachFlag(Of T)(ByVal sender As [Enum],
 ByVal action As Action(Of T))

 For Each flag As T In sender.Flags(Of T)
 action.Invoke(flag)
 Next flag

End Sub

Usage Example:

Dim flags As FileAttributes = (FileAttributes.ReadOnly Or FileAttributes.Hidden)

flags.ForEachFlag(Of FileAttributes)(
 Sub(ByVal x As FileAttributes)
 Console.WriteLine(x.ToString())
 End Sub)

Section 10.11: Determine the amount of flags in a flag
combination
The next example is intended to count the amount of flags in the specified flag combination.

The example is provided as a extension method:

<DebuggerStepThrough>
<Extension>
<EditorBrowsable(EditorBrowsableState.Always)>
Public Function CountFlags(ByVal sender As [Enum]) As Integer
 Return sender.ToString().Split(","c).Count()
End Function

Usage Example:

Dim flags As FileAttributes = (FileAttributes.Archive Or FileAttributes.Compressed)
Dim count As Integer = flags.CountFlags()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 43

Console.WriteLine(count)

Section 10.12: Find the nearest value in a Enum
The next code illustrates how to find the nearest value of a Enum.

First we define this Enum that will serve to specify search criteria (search direction)

Public Enum EnumFindDirection As Integer
 Nearest = 0
 Less = 1
 LessOrEqual = 2
 Greater = 3
 GreaterOrEqual = 4
End Enum

And now we implement the search algorithm:

<DebuggerStepThrough>
Public Shared Function FindNearestEnumValue(Of T)(ByVal value As Long,
 ByVal direction As EnumFindDirection) As T

 Select Case direction

 Case EnumFindDirection.Nearest
 Return (From enumValue As T In [Enum].GetValues(GetType(T)).Cast(Of T)()
 Order By Math.Abs(value - Convert.ToInt64(enumValue))
).FirstOrDefault

 Case EnumFindDirection.Less
 If value < Convert.ToInt64([Enum].GetValues(GetType(T)).Cast(Of T).First) Then
 Return [Enum].GetValues(GetType(T)).Cast(Of T).FirstOrDefault

 Else
 Return (From enumValue As T In [Enum].GetValues(GetType(T)).Cast(Of T)()
 Where Convert.ToInt64(enumValue) < value
).LastOrDefault
 End If

 Case EnumFindDirection.LessOrEqual
 If value < Convert.ToInt64([Enum].GetValues(GetType(T)).Cast(Of T).First) Then
 Return [Enum].GetValues(GetType(T)).Cast(Of T).FirstOrDefault

 Else
 Return (From enumValue As T In [Enum].GetValues(GetType(T)).Cast(Of T)()
 Where Convert.ToInt64(enumValue) <= value
).LastOrDefault
 End If

 Case EnumFindDirection.Greater
 If value > Convert.ToInt64([Enum].GetValues(GetType(T)).Cast(Of T).Last) Then
 Return [Enum].GetValues(GetType(T)).Cast(Of T).LastOrDefault

 Else
 Return (From enumValue As T In [Enum].GetValues(GetType(T)).Cast(Of T)()
 Where Convert.ToInt64(enumValue) > value
).FirstOrDefault
 End If

 Case EnumFindDirection.GreaterOrEqual

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 44

 If value > Convert.ToInt64([Enum].GetValues(GetType(T)).Cast(Of T).Last) Then
 Return [Enum].GetValues(GetType(T)).Cast(Of T).LastOrDefault

 Else
 Return (From enumValue As T In [Enum].GetValues(GetType(T)).Cast(Of T)()
 Where Convert.ToInt64(enumValue) >= value
).FirstOrDefault
 End If

 End Select

End Function

Usage Example:

Public Enum Bitrate As Integer
 Kbps128 = 128
 Kbps192 = 192
 Kbps256 = 256
 Kbps320 = 320
End Enum

Dim nearestValue As Bitrate = FindNearestEnumValue(Of Bitrate)(224,
EnumFindDirection.GreaterOrEqual)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 45

Chapter 11: Dictionaries
A dictionary represents a collection of keys and values. See MSDN Dictionary(Tkey, TValue) Class.

Section 11.1: Create a dictionary filled with values
Dim extensions As New Dictionary(Of String, String) _
 from { { "txt", "notepad" },
 { "bmp", "paint" },
 { "doc", "winword" } }

This creates a dictionary and immediately fills it with three KeyValuePairs.

You can also add new values later on by using the Add method:

extensions.Add("png", "paint")

Note that the key (the first parameter) needs to be unique in the dictionary, otherwise an Exception will be thrown.

Section 11.2: Loop through a dictionary and print all entries
Each pair in the dictionary is an instance of KeyValuePair with the same type parameters as the Dictionary. When
you loop through the dictionary with For Each, each iteration will give you one of the Key-Value Pairs stored in the
dictionary.

For Each kvp As KeyValuePair(Of String, String) In currentDictionary
 Console.WriteLine("{0}: {1}", kvp.Key, kvp.Value)
Next

Section 11.3: Checking for key already in dictionary - data
reduction
The ConstainsKey method is the way to know if a key already exists in the Dictionary.

This come in handy for data reduction. In the sample below, each time we encountner a new word, we add it as a
key in the dictionary, else we increment the counter for this specific word.

 Dim dic As IDictionary(Of String, Integer) = New Dictionary(Of String, Integer)

 Dim words As String() = Split(<big text source>," ", -1, CompareMethod.Binary)

 For Each str As String In words
 If dic.ContainsKey(str) Then
 dic(str) += 1
 Else
 dic.Add(str, 1)
 End If
 Next

XML reduction example : getting all the child nodes names and occurrence in an branch of an XML document

Dim nodes As IDictionary(Of String, Integer) = New Dictionary(Of String, Integer)
Dim xmlsrc = New XmlDocument()
xmlsrc.LoadXml(<any text stream source>)

https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 46

For Each xn As XmlNode In xmlsrc.FirstChild.ChildNodes 'selects the proper parent
 If nodes.ContainsKey(xn.Name) Then
 nodes(xn.Name) += 1
 Else
 nodes.Add(xn.Name, 1)
 End If
Next

Section 11.4: Getting a dictionary value
You can get the value of an entry in the dictionary using the 'Item' property:

Dim extensions As New Dictionary(Of String, String) From {
 { "txt", "notepad" },
 { "bmp", "paint" },
 { "doc", "winword" }
}

Dim program As String = extensions.Item("txt") 'will be "notepad"

' alternative syntax as Item is the default property (a.k.a. indexer)
Dim program As String = extensions("txt") 'will be "notepad"

' other alternative syntax using the (rare)
' dictionary member access operator (a.k.a. bang operator)
Dim program As String = extensions!txt 'will be "notepad"

If the key is not present in the dictionary, a KeyNotFoundException will be thrown.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 47

Chapter 12: Looping
Section 12.1: For...Next
For...Next loop is used for repeating the same action for a finite number of times. The statements inside the
following loop will be executed 11 times. The first time, i will have the value 0, the second time it will have the value
1, the last time it will have the value 10.

For i As Integer = 0 To 10
 'Execute the action
 Console.Writeline(i.ToString)
Next

Any integer expression can be used to parameterize the loop. It is permitted, but not required, for the control
variable (in this case i) to also be stated after the Next. It is permitted for the control variable to be declared in
advance, rather than within the For statement.

Dim StartIndex As Integer = 3
Dim EndIndex As Integer = 7
Dim i As Integer

For i = StartIndex To EndIndex - 1
 'Execute the action
 Console.Writeline(i.ToString)
Next i

Being able to define the Start and End integers allows loops to be created that directly reference other objects, such
as:

For i = 0 to DataGridView1.Rows.Count - 1
 Console.Writeline(DataGridView1.Rows(i).Cells(0).Value.ToString)
Next

This would then loop through every row in DataGridView1 and perform the action of writing the value of Column 1
to the Console. (The -1 is because the first row of the counted rows would be 1, not 0)

It is also possible to define how the control variable must increment.

For i As Integer = 1 To 10 Step 2
 Console.Writeline(i.ToString)
Next

This outputs:

1 3 5 7 9

It is also possible to decrement the control variable (count down).

For i As Integer = 10 To 1 Step -1
 Console.Writeline(i.ToString)
Next

This outputs:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 48

10 9 8 7 6 5 4 3 2 1

You should not attempt to use (read or update) the control variable outside the loop.

Section 12.2: For Each...Next loop for looping through
collection of items
You can use a For Each...Next loop to iterate through any IEnumerable type. This includes arrays, lists, and
anything else that may be of type IEnumerable or returns an IEnumerable.

An example of looping through a DataTable's Rows property would look like this:

For Each row As DataRow In DataTable1.Rows
 'Each time this loops, row will be the next item out of Rows
 'Here we print the first column's value from the row variable.
 Debug.Print(Row.Item(0))
Next

An important thing to note is that the collection must not be modified while in a For Each loop. Doing so will cause
a System.InvalidOperationException with the message:

Collection was modified; enumeration operation may not execute.

Section 12.3: Short Circuiting
Any loop may be terminated or continued early at any point by using the Exit or Continue statements.

Exiting

You can stop any loop by exiting early. To do this, you can use the keyword Exit along with the name of the loop.

Loop Exit Statement
For Exit For

For Each Exit For

Do While Exit Do

While Exit While

Exiting a loop early is a great way to boost performance by only looping the necessary number of times to satisfy
the application's needs. Below is example where the loop will exit once it finds the number 2.

Dim Numbers As Integer() = {1,2,3,4,5}
Dim SoughtValue As Integer = 2
Dim SoughtIndex
For Each i In Numbers
 If i = 2 Then
 SoughtIndex = i
 Exit For
 End If
Next
Debug.Print(SoughtIndex)

Continuing

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 49

Along with exiting early, you can also decide that you need to just move on to the next loop iteration. This is easily
done by using the Continue statement. Just like Exit, it is proceeded by the loop name.

Loop Continue Statement
For Continue For

For Each Continue For

Do While Continue Do

While Continue While

Here's an example of preventing even numbers from being added to the sum.

Dim Numbers As Integer() = {1,2,3,4,5}
Dim SumOdd As Integer = 0
For Each i In Numbers
 If Numbers(i) \ 2 = 0 Then Continue For
 SumOdd += Numbers(i)
Next

Usage Advice

There are two alternative techniques that can be used instead of using Exit or Continue.

You can declare a new Boolean variable, initializing it to one value and conditionally setting it to the other value
inside the loop; you then use a conditional statement (e.g. If) based on that variable to avoid execution of the
statements inside the loop in subsequent iterations.

Dim Found As Boolean = False
Dim FoundIndex As Integer
For i As Integer = 0 To N - 1
 If Not Found AndAlso A(i) = SoughtValue Then
 FoundIndex = i
 Found = True
 End If
Next

One of the objections to this technique is that it may be inefficient. For example, if in the above example N is
1000000 and the first element of the array A is equal to SoughtValue, the loop will iterate a further 999999 times
without doing anything useful. However, this technique can have the advantage of greater clarity in some cases.

You can use the GoTo statement to jump out of the loop. Note that you cannot use GoTo to jump into a loop.

 Dim FoundIndex As Integer
 For i As Integer = 0 To N - 1
 If A(i) = SoughtValue Then
 FoundIndex = i
 GoTo Found
 End If
 Next
 Debug.Print("Not found")
Found:
 Debug.Print(FoundIndex)

This technique can sometimes be the neatest way to jump out of the loop and avoid one or more statements that
are executed just after the natural end of the loop.

You should consider all of the alternatives, and use whichever one best fits your requirements, considering such

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 50

things as efficiency, speed of writing the code, and readability (thus maintainability).

Do not be put off using GoTo on those occasions when it is the best alternative.

Section 12.4: While loop to iterate while some condition is true
A While loop starts by evaluating a condition. If it is true, the body of the loop is executed. After the body of the
loop is executed, the While condition is evaluated again to determine whether to re-execute the body.

Dim iteration As Integer = 1
While iteration <= 10
 Console.Writeline(iteration.ToString() & " ")

 iteration += 1
End While

This outputs:

1 2 3 4 5 6 7 8 9 10

Warning: A While loop can lead to an infinite loop. Consider what would happen if the line of code that increments
iteration were removed. In such a case the condition would never be True and the loop would continue
indefinitely.

Section 12.5: Nested Loop
A nested loop is a loop within a loop, an inner loop within the body of an outer one. How this works is
that the first pass of the outer loop triggers the inner loop, which executes to completion. Then the
second pass of the outer loop triggers the inner loop again. This repeats until the outer loop finishes. a
break within either the inner or outer loop would interrupt this process.

The Structure of a For Next nested loop is :

For counter1=startNumber to endNumber (Step increment)

 For counter2=startNumber to endNumber (Step increment)

 One or more VB statements

 Next counter2

Next counter1

Example :

 For firstCounter = 1 to 5

 Print “First Loop of ” + firstCounter

 For secondCounter= 1 to 4

 Print “Second Loop of ” + secondCounter

 Next secondCounter

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 51

 Next firstCounter

Section 12.6: Do...Loop
Use Do...Loop to repeat a block of statements While or Until a condition is true, checking the condition either at
the beginning or at the end of the loop.

Dim x As Integer = 0
Do
 Console.Write(x & " ")
 x += 1
Loop While x < 10

or

Dim x As Integer = 0
Do While x < 10
 Console.Write(x & " ")
 x += 1
Loop

0 1 2 3 4 5 6 7 8 9

Dim x As Integer = 0
Do
 Console.Write(x & " ")
 x += 1
Loop Until x = 10

or

Dim x As Integer = 0
Do Until x = 10
 Console.Write(x & " ")
 x += 1
Loop

0 1 2 3 4 5 6 7 8 9

Continue Do can be used to skip to the next iteration of the loop:

Dim x As Integer = 0
Do While x < 10
 x += 1
 If x Mod 2 = 0 Then
 Continue Do
 End If
 Console.Write(x & " ")
Loop

1 3 5 7 9

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 52

You can terminate the loop with Exit Do - note that in this example, the lack of any condition would otherwise
cause an infinite loop:

Dim x As Integer = 0
Do
 Console.Write(x & " ")
 x += 1
 If x = 10 Then
 Exit Do
 End If
Loop

0 1 2 3 4 5 6 7 8 9

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 53

Chapter 13: File Handling
Section 13.1: Write Data to a File
To write the contents of a string to a file:

Dim toWrite As String = "This will be written to the file."
System.IO.File.WriteAllText("filename.txt", toWrite)

WriteAllText will open the specified file, write the data, and then close the file. If the target file exists, it is
overwritten. If the target file does not exist, it is created.

To write the contents of an array to a file:

Dim toWrite As String() = {"This", "Is", "A", "Test"}
System.IO.File.WriteAllLines("filename.txt", toWrite)

WriteAllLines will open the specified file, write each value of the array on a new line, and then close the file. If the
target file exists, it is overwritten. If the target file does not exist, it is created.

Section 13.2: Read All Contents of a File
To read the contents to a file into a string variable:

Dim fileContents As String = System.IO.File.ReadAllText("filename.txt")

ReadAllText will open the specified file, read data to the end, then close the file.

To read a file, separating it into an array element for each line:

Dim fileLines As String() = System.IO.File.ReadAllLines("filename.txt")

ReadAllLines will open the specified file, read each line of the file into a new index in an array until the end of the
file, then close the file.

Section 13.3: Write Lines Individually to a Text File using
StreamWriter
Using sw As New System.IO.StreamWriter("path\to\file.txt")
 sw.WriteLine("Hello world")
End Using

The use of a Using block is recommended good practice when using an object that Implements IDisposable

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 54

Chapter 14: File/Folder Compression
Section 14.1: Adding File Compression to your project

In Solution Explorer go to your project, right click on References then Add reference…1.
Search for Compression and select System.IO.Compression.FileSystem then press OK.2.
Add Imports System.IO.Compression to the top of your code file (before any class or module, with the other3.
Imports statements).

Option Explicit On
Option Strict On

Imports System.IO.Compression

Public Class Foo

 ...

End Class

Plese note that this class (ZipArchive) is only available from .NET verison 4.5 onwards

Section 14.2: Creating zip archive from directory
System.IO.Compression.ZipFile.CreateFromDirectory("myfolder", "archive.zip")

Create archive.zip file containing files which are in myfolder. In example paths are relative to program working
directory. You can specify absolute paths.

Section 14.3: Extracting zip archive to directory
System.IO.Compression.ZipFile.ExtractToDirectory("archive.zip", "myfolder")

Extracts archive.zip to myfolder directory. In example paths are relative to program working directory. You can
specify absolute paths.

Section 14.4: Create zip archive dynamicaly
' Create filestream to file
Using fileStream = New IO.FileStream("archive.zip", IO.FileMode.Create)
 ' open zip archive from stream
 Using archive = New System.IO.Compression.ZipArchive(fileStream,
IO.Compression.ZipArchiveMode.Create)
 ' create file_in_archive.txt in archive
 Dim zipfile = archive.CreateEntry("file_in_archive.txt")

 ' write Hello world to file_in_archive.txt in archive
 Using sw As New IO.StreamWriter(zipfile.Open())
 sw.WriteLine("Hello world")
 End Using

 End Using
End Using

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 55

Chapter 15: Connection Handling
Section 15.1: Public connection property
 Imports System.Data.OleDb

 Private WithEvents _connection As OleDbConnection
 Private _connectionString As String = "myConnectionString"

 Public ReadOnly Property Connection As OleDbConnection
 Get
 If _connection Is Nothing Then
 _connection = New OleDbConnection(_connectionString)
 _connection.Open()
 Else
 If _connection.State <> ConnectionState.Open Then
 _connection.Open()
 End If
 End If
 Return _connection
 End Get
 End Property

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 56

Chapter 16: Data Access
Section 16.1: Read field from Database
Public Function GetUserFirstName(UserName As String) As String
 Dim Firstname As String = ""

 'Specify the SQL that you want to use including a Parameter
 Dim SQL As String = "select firstname from users where username=@UserName"

 'Provide a Data Source
 Dim DBDSN As String = "Data Source=server.address;Initial Catalog=DatabaseName;Persist Security
Info=True;User ID=UserName;Password=UserPassword"

 Dim dbConn As New SqlConnection(DBDSN)

 Dim dbCommand As New SqlCommand(SQL, dbConn)

 'Provide one or more Parameters
 dbCommand.Parameters.AddWithValue("@UserName", UserName)

 'An optional Timeout
 dbCommand.CommandTimeout = 600

 Dim reader As SqlDataReader
 Dim previousConnectionState As ConnectionState = dbConn.State
 Try
 If dbConn.State = ConnectionState.Closed Then
 dbConn.Open()
 End If
 reader = dbCommand.ExecuteReader
 Using reader
 With reader
 If .HasRows Then
 'Read the 1st Record
 reader.Read()
 'Read required field/s
 Firstname = .Item("FirstName").ToString
 End If

 End With

 End Using

 Catch
 'Handle the error here
 Finally
 If previousConnectionState = ConnectionState.Closed Then
 dbConn.Close()
 End If
 dbConn.Dispose()
 dbCommand.Dispose()

 End Try
 'Pass the data back from the function
 Return Firstname

End Function

Using the above function is simply:

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 57

 Dim UserFirstName as string=GetUserFirstName(UserName)

Section 16.2: Simple Function to read from Database and
return as DataTable
This simple function will execute the specified Select SQL command and return the result as data set.

Public Function ReadFromDatabase(ByVal DBConnectionString As String, ByVal SQL As String) As
DataTable
 Dim dtReturn As New DataTable
 Try
 'Open the connection using the connection string
 Using conn As New SqlClient.SqlConnection(DBConnectionString)
 conn.Open()

 Using cmd As New SqlClient.SqlCommand()
 cmd.Connection = conn
 cmd.CommandText = SQL
 Dim da As New SqlClient.SqlDataAdapter(cmd)
 da.Fill(dtReturn)
 End Using
 End Using
 Catch ex As Exception
 'Handle the exception
 End Try

 'Return the result data set
 Return dtReturn
End Function

Now you can execute the above function from below codes

Private Sub MainFunction()
 Dim dtCustomers As New DataTable
 Dim dtEmployees As New DataTable
 Dim dtSuppliers As New DataTable

 dtCustomers = ReadFromDatabase("Server=MYDEVPC\SQLEXPRESS;Database=MyDatabase;User
Id=sa;Password=pwd22;", "Select * from [Customers]")
 dtEmployees = ReadFromDatabase("Server=MYDEVPC\SQLEXPRESS;Database=MyDatabase;User
Id=sa;Password=pwd22;", "Select * from [Employees]")
 dtSuppliers = ReadFromDatabase("Server=MYDEVPC\SQLEXPRESS;Database=MyDatabase;User
Id=sa;Password=pwd22;", "Select * from [Suppliers]")

End Sub

The above example expects that your SQL Express instance "SQLEXPRESS" is currently installed on "MYDEVPC" and
your database "MyDatabase" contains "Customers", "Suppliers" and "Employees" tables and the "sa" user password
is "pwd22". Please change these values as per your setup to get the desired results.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 58

Chapter 17: Type conversion
Function name Range for Expression argument
CBool Any valid Char or String or numeric expression

CByte 0 through 255 (unsigned); fractional parts are rounded.

CChar Any valid Char or String expression; only first character of a String is converted; value can be 0
through 65535 (unsigned).

Section 17.1: Converting Text of The Textbox to an Integer
From MSDN

Use the CInt function to provide conversions from any other data type to an Integer subtype. For
example, CInt forces integer arithmetic when currency, single-precision, or double-precision arithmetic
would normally occur.

Assuming that you have 1 button and 2 textbox. If you type on textbox1.text 5.5 and on textbox2.text 10.

If you have this code:

Dim result = textbox1.text + textbox2.text
MsgBox("Result: " & result)
'It will output
5.510

In order to add the values of the 2 textboxes you need to convert their values to Int by using the
CInt(expression).

Dim result = CInt(textbox1.text) + CInt(textbox2.text)
MsgBox("Result: " & result)
'It will output
16

Note: When the fractional part of a value is exactly 0.5, the CInt function rounds to the closest even
number. For example, 0.5 rounds to 0, while 1.5 rounds to 2, and 3.5 rounds to 4. The purpose of
rounding to the closest even number is to compensate for a bias that could accumulate when many
numbers are added together.

https://msdn.microsoft.com/en-us/library/s2dy91zy.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 59

Chapter 18: ByVal and ByRef keywords
Section 18.1: ByRef keyword
ByRef keyword before method parameter says that parameter will be sent in a way allowing the method to change
(assign a new value) the variable underlying the parameter.

Class SomeClass
 Public Property Member As Integer
End Class

Module Program
 Sub Main()
 Dim someInstance As New SomeClass With {.Member = 42}

 Foo (someInstance)
 ' here someInstance is not Nothing
 ' but someInstance.Member is -42

 Bar(someInstance)
 ' here someInstance is Nothing
 End Sub

 Sub Foo(ByVal arg As SomeClass)
 arg.Member = -arg.Member ' change argument content
 arg = Nothing ' change (re-assign) argument
 End Sub

 Sub Bar(ByRef param As Integer)
 arg.Member = -arg.Member ' change argument content
 arg = Nothing ' change (re-assign) argument
 End Sub
End Module

Section 18.2: ByVal keyword
ByVal keyword before method parameter (or no keyword as ByVal is assumed by default) says that parameter will
be sent in a way not allowing the method to change (assign a new value) the variable underlying the parameter.
It doesn't prevent the content (or state) of the argument to be changed if it's a class.

Class SomeClass
 Public Property Member As Integer
End Class

Module Program
 Sub Main()
 Dim someInstance As New SomeClass With {.Member = 42}

 Foo (someInstance)
 ' here someInstance is not Nothing (still the same object)
 ' but someInstance.Member is -42 (internal state can still be changed)

 Dim number As Integer = 42
 Foo(number)
 ' here number is still 42
 End Sub

 Sub Foo(ByVal arg As SomeClass)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 60

 arg.Member = -arg.Member ' change argument content
 arg = Nothing ' change (re-assign) argument
 End Sub

 Sub Foo(arg As Integer) ' No ByVal or ByRef keyword, ByVal is assumed
 arg = -arg
 End Sub
End Module

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 61

Chapter 19: Console
Section 19.1: Console.ReadLine()
Dim input as String = Console.ReadLine()

Console.ReadLine() will read the console input from the user, up until the next newline is detected (usually upon
pressing the Enter or Return key). Code execution is paused in the current thread until a newline is provided.
Afterwards, the next line of code will be executed.

Section 19.2: Console.Read()
Dim inputCode As Integer = Console.Read()

Console.Read() awaits input from the user and, upon receipt, returns an integer value corresponding with the
character code of the entered character. If the input stream is ended in some way before input can be obtained, -1
is returned instead.

Section 19.3: Console.ReadKey()
Dim inputChar As ConsoleKeyInfo = Console.ReadKey()

Console.ReadKey() awaits input from the user and, upon receipt, returns an object of class ConsoleKeyInfo, which
holds information relevant to the character which the user provided as input. For detail regarding the information
provided, visit the MSDN documentation.

Section 19.4: Prototype of command line prompt
Module MainPrompt
Public Const PromptSymbol As String = "TLA > "
Public Const ApplicationTitle As String = GetType(Project.BaseClass).Assembly.FullName
REM Or you can use a custom string
REM Public Const ApplicationTitle As String = "Short name of the application"

Sub Main()
 Dim Statement As String
 Dim BrokenDownStatement As String()
 Dim Command As String
 Dim Args As String()
 Dim Result As String

 Console.ForegroundColor = ConsoleColor.Cyan
 Console.Title = ApplicationTitle & " command line console"

 Console.WriteLine("Welcome to " & ApplicationTitle & "console frontend")
 Console.WriteLine("This package is version " &
GetType(Project.BaseClass).Assembly.GetName().Version.ToString)
 Console.WriteLine()
 Console.Write(PromptSymbol)

 Do While True
 Statement = Console.ReadLine()
 BrokenDownStatement = Statement.Split(" ")
 ReDim Args(BrokenDownStatement.Length - 1)
 Command = BrokenDownStatement(0)

https://msdn.microsoft.com/en-us/library/system.consolekeyinfo.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 62

 For i = 1 To BrokenDownStatement.Length - 1
 Args(i - 1) = BrokenDownStatement(i)
 Next

 Select Case Command.ToLower
 Case "example"
 Result = DoSomething(Example)
 Case "exit", "quit"
 Exit Do
 Case "ver"
 Result = "This package is version " &
GetType(Project.BaseClass).Assembly.GetName().Version.ToString
 Case Else
 Result = "Command not acknowldged: -" & Command & "-"
 End Select
 Console.WriteLine(" " & Result)
 Console.Write(PromptSymbol)
 Loop

 Console.WriteLine("I am exiting, time is " & DateTime.Now.ToString("u"))
 Console.WriteLine("Goodbye")
 Environment.Exit(0)
End Sub
End Module

This prototype generate a basic command line interpreter.

It automatically get the application name and version to communicate to the user. For each input line, it recognize
the command and an arbitrary list of arguments, all separated by space.

As a basic example, this code understand ver, quit and exit commands.

The parameter Project.BaseClass is a class of your project where the Assembly details are set.

Section 19.5: Console.WriteLine()
Dim x As Int32 = 128
Console.WriteLine(x) ' Variable '
Console.WriteLine(3) ' Integer '
Console.WriteLine(3.14159) ' Floating-point number '
Console.WriteLine("Hello, world") ' String '
Console.WriteLine(myObject) ' Outputs the value from calling myObject.ToString()

The Console.WriteLine() method will print the given argument(s) with a newline attached at the end. This will
print any object supplied, including, but not limited to, strings, integers, variables, floating-point numbers.

When writing objects that are not explicitly called out by the various WriteLine overloads (that is, you are using the
overload that expects a value of type Object, WriteLine will use the .ToString() method to generate a String to
actually write. Your custom objects should OverRide the .ToString method and produce something more
meaningful than the default implementation (which typically just writes the fully qualified type name).

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 63

Chapter 20: Functions
The function is just like sub. But function returns a value. A function can accept single or multiple parameters.

Section 20.1: Defining a Function
It's really easy to define the functions.

Function GetAreaOfARectangle(ByVal Edge1 As Integer, ByVal Edge2 As Integer) As Integer
 Return Edge1 * Edge2
End Function

Dim Area As Integer = GetAreaOfARectangle(5, 8)
Console.Writeline(Area) 'Output: 40

Section 20.2: Defining a Function #2
Function Age(ByVal YourAge As Integer) As String
 Select Case YourAge
 Case Is < 18
 Return("You are younger than 18! You are teen!")
 Case 18 to 64
 Return("You are older than 18 but younger than 65! You are adult!")
 Case Is >= 65
 Return("You are older than 65! You are old!")
 End Select
End Function

Console.WriteLine(Age(48)) 'Output: You are older than 18 but younger than 65! You are adult!

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 64

Chapter 21: Recursion
Section 21.1: Compute nth Fibonacci number
Visual Basic.NET, like most languages, permits recursion, a process by which a function calls itself under certain
conditions.

Here is a basic function in Visual Basic .NET to compute Fibonacci numbers.

''' <summary>
''' Gets the n'th Fibonacci number
''' </summary>
''' <param name="n">The 1-indexed ordinal number of the Fibonacci sequence that you wish to receive.
Precondition: Must be greater than or equal to 1.</param>
''' <returns>The nth Fibonacci number. Throws an exception if a precondition is violated.</returns>
Public Shared Function Fibonacci(ByVal n as Integer) as Integer
 If n<1
 Throw New ArgumentOutOfRangeException("n must be greater than or equal to one.")
 End If
 If (n=1) or (n=2)
 ''Base case. The first two Fibonacci numbers (n=1 and n=2) are both 1, by definition.
 Return 1
 End If
 ''Recursive case.
 ''Get the two previous Fibonacci numbers via recursion, add them together, and return the result.
 Return Fibonacci(n-1) + Fibonacci(n-2)
End Function

This function works by first checking if the function has been called with the parameter n equal to 1 or 2. By
definition, the first two values in the Fibonacci sequence are 1 and 1, so no further computation is necessary to
determine this. If n is greater than 2, we cannot look up the associated value as easily, but we know that any such
Fibonacci number is equal to the sum of the prior two numbers, so we request those via recursion (calling our own
Fibonacci function). Since successive recursive calls get called with smaller and smaller numbers via decrements of
-1 and -2, we know that eventually they will reach numbers that are smaller than 2. Once those conditions (called
base cases) are reached, the stack unwinds and we get our final result.

https://en.wikipedia.org/wiki/Fibonacci_number
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 65

Chapter 22: Random
The Random class is used to generate non-negative pseudo-random integers that are not truly random, but are for
general purposes close enough.

The sequence is calculated using an initial number (called the Seed) In earlier versions of .net, this seed number
was the same every time an application was run. So what would happen was that you would get the same
sequence of pseudo-random numbers every time the application was executed. Now, the seed is based on the time
the object is declared.

Section 22.1: Declaring an instance
Dim rng As New Random()

This declares an instance of the Random class called rng. In this case, the current time at the point where the object
is created is used to calculate the seed. This is the most common usage, but has its own problems as we shall see
later in the remarks

Instead of allowing the program to use the current time as part of the calculation for the initial seed number, you
can specify the initial seed number. This can be any 32 bit integer literal, constant or variable. See below for
examples. Doing this means that your instance will generate the same sequence of pseudo-random numbers,
which can be useful in certain situations.

Dim rng As New Random(43352)

or

Dim rng As New Random(x)

where x has been declared elsewhere in your program as an Integer constant or variable.

Section 22.2: Generate a random number from an instance of
Random
The following example declares a new instance of the Random class and then uses the method .Next to generate
the next number in the sequence of pseudo-random numbers.

Dim rnd As New Random
Dim x As Integer
x = rnd.Next

The last line above will generate the next pseudo-random number and assign it to x. This number will be in the
range of 0 - 2147483647. However, you can also specify the range of numbers to be generated as in the example
below.

x = rnd.Next(15, 200)

Please note however, that using these parameters, range of numbers will be between 15 or above and 199 or
below.

You can also generate floating point numbers of the type Double by using .NextDouble e.g

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 66

Dim rnd As New Random
Dim y As Double
y = rnd.NextDouble()

You cannot however specify a range for this. It will always be in the range of 0.0 to less than 1.0.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 67

Chapter 23: Classes
A class groups different functions, methods, variables, and properties, which are called its members. A class
encapsulates the members, which can be accessed by an instance of the class, called an object. Classes are
extremely useful for the programmer, as they make the task convenient and fast, with characteristics such as
modularity, re-usability, maintainability, and readability of the code.

Classes are the building blocks of object-oriented programming languages.

Section 23.1: Abstract Classes
If classes share common functionality you can group this in a base or abstract class. Abstract classes can contain
partial or no implementation at all and allow the derived type to override the base implementation.

Abstract classes within VisualBasic.NET must be declared as MustInherit and cannot be instantiated.

Public MustInherit Class Vehicle
 Private Property _numberOfWheels As Integer
 Private Property _engineSize As Integer

 Public Sub New(engineSize As Integer, wheels As Integer)
 _numberOfWheels = wheels
 _engineSize = engineSize
 End Sub

 Public Function DisplayWheelCount() As Integer
 Return _numberOfWheels
 End Function
End Class

A sub type can then inherit this abstract class as shown below:

Public Class Car
 Inherits Vehicle
End Class

Car will inherit all of the declared types within vehicle, but can only access them based upon the underlying access
modifier.

Dim car As New Car()
car.DisplayWheelCount()

In the above example a new Car instance is created. The DisplayWheelCount() method is then invoked which will
call the base class Vehicles implementation.

Section 23.2: Creating classes
Classes provide a way of creating your own types within the .NET framework. Within a class definition you may
include the following:

Fields
Properties
Methods
Constructors

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 68

Events

To declare a class you use the following syntax:

Public Class Vehicle
End Class

Other .NET types can be encapsulated within the class and exposed accordingly, as shown below:

Public Class Vehicle
 Private Property _numberOfWheels As Integer
 Private Property _engineSize As Integer

 Public Sub New(engineSize As Integer, wheels As Integer)
 _numberOfWheels = wheels
 _engineSize = engineSize
 End Sub

 Public Function DisplayWheelCount() As Integer
 Return _numberOfWheels
 End Function
End Class

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 69

Chapter 24: Generics
Section 24.1: Create a generic class
A generic type is created to adapt so that the same functionallity can be accessible for different data types.

Public Class SomeClass(Of T)
 Public Sub doSomething(newItem As T)
 Dim tempItem As T
 ' Insert code that processes an item of data type t.
 End Sub
End Class

Section 24.2: Instance of a Generic Class
By creating an instance of the same class with a different type given, the interface of the class changes depending
on the given type.

Dim theStringClass As New SomeClass(Of String)
Dim theIntegerClass As New SomeClass(Of Integer)

Section 24.3: Define a 'generic' class
A generic class is a class who adapts to a later-given type so that the same functionality can be offered to different
types.

In this basic example a generic class is created. It has a sub who uses the generic type T. While programming this
class, we don't know the type of T. In this case T has all the characteristics of Object.

Public Class SomeClass(Of T)
 Public Sub doSomething(newItem As T)
 Dim tempItem As T
 ' Insert code that processes an item of data type t.
 End Sub
End Class

Section 24.4: Use a generic class
In this example there are 2 instances created of the SomeClass Class. Depending on the type given the 2 instances
have a different interface:

Dim theStringClass As New SomeClass(Of String)
Dim theIntegerClass As New SomeClass(Of Integer)

http://i.stack.imgur.com/9trTP.png
http://i.stack.imgur.com/8qt7U.png
http://i.stack.imgur.com/cJyvz.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 70

The most famous generic class is List(of)

Section 24.5: Limit the possible types given
The possible types passed to a new instance of SomeClass must inherit SomeBaseClass. This can also be an
interface. The characteristics of SomeBaseClass are accessible within this class definition.

Public Class SomeClass(Of T As SomeBaseClass)
 Public Sub DoSomething(newItem As T)
 newItem.DoSomethingElse()
 ' Insert code that processes an item of data type t.
 End Sub
End Class

Public Class SomeBaseClass
 Public Sub DoSomethingElse()
 End Sub
End Class

Section 24.6: Create a new instance of the given type
Creating a new intance of a generic type can be done/checed at compile time.

Public Class SomeClass(Of T As {New})
 Public Function GetInstance() As T
 Return New T
 End Function
End Class

Or with limited types:

Public Class SomeClass(Of T As {New, SomeBaseClass})
 Public Function GetInstance() As T
 Return New T
 End Function
End Class

Public Class SomeBaseClass
End Class

The baseClass (if none given it is Object) must have a parameter less constructor.

This can also be done at runtime through reflection

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 71

Chapter 25: Disposable objects
Section 25.1: Basic concept of IDisposable
Any time you instantiate a class that Implements IDisposable, you should call .Dispose1 on that class when you
have finished using it. This allows the class to clean up any managed or unmanaged dependencies that it may be
using. Not doing this could cause a memory leak.

The Using keyword ensures that .Dispose is called, without you having to explicitly call it.

For example without Using:

Dim sr As New StreamReader("C:\foo.txt")
Dim line = sr.ReadLine
sr.Dispose()

Now with Using:

Using sr As New StreamReader("C:\foo.txt")
 Dim line = sr.ReadLine
End Using '.Dispose is called here for you

One major advantage Using has is when an exception is thrown, because it ensures .Dispose is called.

Consider the following. If an exception is thrown, you need to need to remember to call .Dispose but you might also
have to check the state of the object to ensure you don't get a null reference error, etc.

 Dim sr As StreamReader = Nothing
 Try
 sr = New StreamReader("C:\foo.txt")
 Dim line = sr.ReadLine
 Catch ex As Exception
 'Handle the Exception
 Finally
 If sr IsNot Nothing Then sr.Dispose()
 End Try

A using block means you don't have to remember to do this and you can declare your object inside the try:

 Try
 Using sr As New StreamReader("C:\foo.txt")
 Dim line = sr.ReadLine
 End Using
 Catch ex As Exception
 'sr is disposed at this point
 End Try

1 Do I always have to call Dispose() on my DbContext objects? Nope

Section 25.2: Declaring more objects in one Using
Sometimes, you have to create two Disposable objects in a row. There is an easy way to avoid nesting Using blocks.

This code

http://blog.jongallant.com/2012/10/do-i-have-to-call-dispose-on-dbcontext.html
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 72

Using File As New FileStream("MyFile", FileMode.Append)
 Using Writer As New BinaryWriter(File)
 'You code here
 Writer.Writer("Hello")
 End Using
End Using

can be shortened into this one. The main advantage is that you gain one indentation level:

Using File As New FileStream("MyFile", FileMode.Append), Writer As New BinaryWriter(File)
 'You code here
 Writer.Writer("Hello")
End Using

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 73

Chapter 26: NullReferenceException
Section 26.1: Empty Return
Function TestFunction() As TestClass
 Return Nothing
End Function

BAD CODE

TestFunction().TestMethod()

GOOD CODE

Dim x = TestFunction()
If x IsNot Nothing Then x.TestMethod()
Version = 14.0

Null Conditional Operator

TestFunction()?.TestMethod()

Section 26.2: Uninitialized variable
BAD CODE

Dim f As System.Windows.Forms.Form
f.ShowModal()

GOOD CODE

Dim f As System.Windows.Forms.Form = New System.Windows.Forms.Form
' Dim f As New System.Windows.Forms.Form ' alternative syntax
f.ShowModal()

EVEN BETTER CODE (Ensure proper disposal of IDisposable object more info)

Using f As System.Windows.Forms.Form = New System.Windows.Forms.Form
' Using f As New System.Windows.Forms.Form ' alternative syntax
 f.ShowModal()
End Using

https://msdn.microsoft.com/en-us/library/dn986595.aspx?cs-save-lang=1&cs-lang=vb#code-snippet-1
https://msdn.microsoft.com/en-us/library/htd05whh.aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 74

Chapter 27: Using Statement
Section 27.1: See examples under Disposable objects
Basic concept of IDisposable

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 75

Chapter 28: Option Strict
Section 28.1: Why Use It?
Option Strict On prevents three things from happening:

1. Implicit Narrowing Conversion Errors

It prevents you from assigning to a variable that has less precision or smaller capacity (a narrowing conversion)
without an explicit cast. Doing so would result in data loss.

Dim d As Double = 123.4
Dim s As Single = d 'This line does not compile with Option Strict On

2. Late Binding Calls

Late binding is not allowed. This is to prevent typos that would compile, but fail at runtime

Dim obj As New Object
obj.Foo 'This line does not compile with Option Strict On

3. Implicit Object Type Errors

This prevents variable being inferred as an Object when in fact they should have been declared as a type

Dim something = Nothing. 'This line does not compile with Option Strict On

Conclusion

Unless you need to do late binding, you should always have Option Strict On as it will cause the mentioned errors
to generate compile time errors instead of runtime exceptions.

If you have to do late binding, you can either

Wrap all your late binding calls into one class/module and use Option Strict Off at the top of the code file
(this is the preferred method as it reduces the likelihood of a typos in other files), or
Specify that Late Binding does not cause a compilation failure (Project Properties > Compile Tab >
Warning Configuration)

Section 28.2: How to Switch It On
You can switch it On at the Module/Class Level by placing the directive at the top of the code file.

Option Strict On

You can switch it on at the project level via the menu in Visual Studio

Project > [Project] Properties > Compile Tab > Option Strict > On

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 76

You can switch it On by default for all new Projects by selecting:

Tools > Options > Projects and Solutions > VB defaults > Option Strict
Set it to On.

http://i.stack.imgur.com/H8Pxl.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 77

Chapter 29: Option Explicit
Section 29.1: What is it?
It forces you to explicitly declare all variables.

What is the difference between explicitly declaring and implicitly declaring a variable?

Explicitly declaring a variable:

Dim anInteger As Integer = 1234

Implicitly declaring a variable:

'Did not declare aNumber using Dim
aNumber = 1234

Conclusion

Therefore, you should always have Option Explicit On as you could misspel a variable during assignment, which
cause your program to behave unexpectedly.

Section 29.2: How to switch it on?
Document level

It is on by default, but you can have an extra layer of protection by placing Option Explicit On at the top of the
code file. The option will apply to the whole document.

Project level

You can switch it on via the menu in Visual Studio:

Project > [Project] Properties > Compile Tab > Option Explicit

Choose On in the drop-down menu. The option will apply to the whole document.

All new projects

You can switch it On by default for all new Projects by selecting:

Tools > Options > Projects and Solutions > VB defaults > Option Explicit

Choose On in the drop-down menu.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 78

Chapter 30: Option Infer
Section 30.1: How to enable/disable it
Document level

It is on by default, but you can set it by placing Option Infer On|Off at the top of the code file. The option will
apply to the whole document.

Project level

You can switch it on/off via the menu in Visual Studio:

Project > [Project] Properties > Compile Tab > Option infer

Choose On|Off in the drop-down menu. The option will apply to the whole document.

All new projects

You can switch it On by default for all new Projects by selecting:

Tools > Options > Projects and Solutions > VB defaults > Option Infer

Choose On|Off in the drop-down menu.

Section 30.2: What is it?
Enables the use of local type inference in declaring variables.

What is type inference?

You can declare local variables without explicitly stating a data type. The compiler infers the data type of a variable
from the type of its initialization expression.

Option Infer On:

Dim aString = "1234" '--> Will be treated as String by the compiler
Dim aNumber = 4711 '--> Will be treated as Integer by the compiler

vs. explicit type declaration:

'State a type explicitly
Dim aString as String = "1234"
Dim aNumber as Integer = 4711

Option Infer Off:
The compiler behavior with Option Infer Off depends on the Option Strict setting which is already documented
here.

Option Infer Off - Option Strict Off
All variables without explicit type declarations are declared as Object.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 79

Dim aString = "1234" '--> Will be treated as Object by the compiler

Option Infer Off - Option Strict On
The compiler won´t let you declare a variable without an explicit type.

'Dim aString = "1234" '--> Will not compile due to missing type in declaration

Section 30.3: When to use type inference
Basically you can use type inference whenever it is possible.
However, be careful when combining Option Infer Off and Option Strict Off, as this can lead to undesired run-
time behavior:

Dim someVar = 5
someVar.GetType.ToString() '--> System.Int32
someVar = "abc"
someVar.GetType.ToString() '--> System.String

Anonymous Type
Anonymous types can only be declared with Option Infer On.
They are often used when dealing with LINQ:

Dim countryCodes = New List(Of String)
countryCodes.Add("en-US")
countryCodes.Add("en-GB")
countryCodes.Add("de-DE")
countryCodes.Add("de-AT")

Dim q = From code In countryCodes
 Let split = code.Split("-"c)
 Select New With {.Language = split(0), .Country = split(1)}

Option Infer On
The compiler will recognize the anonymous type:

Option Infer Off
The compiler will either throw an error (with Option Strict On)
or will consider q as type object (with Option Strict Off).
Both cases will produce the outcome that you cannot use the anonymous type.

Doubles/Decimals
Numeric variables with decimal places will be infered as Double by default:

Dim aNumber = 44.11 '--> Will be treated as type `Double` by the compiler

If another type like Decimal is desired the value which initialized the variable needs to be marked:

http://i.stack.imgur.com/TtgR0.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 80

Dim mDecimal = 47.11D '--> Will be treated as type `Decimal` by the compiler

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 81

Chapter 31: Error Handling
Section 31.1: Try...Catch...Finally Statement
Structure:

Try
 'Your program will try to run the code in this block.
 'If any exceptions are thrown, the code in the Catch Block will be executed,
 'without executing the lines after the one which caused the exception.
Catch ex As System.IO.IOException
 'If an exception occurs when processing the Try block, each Catch statement
 'is examined in textual order to determine which handles the exception.
 'For example, this Catch block handles an IOException.
Catch ex As Exception
 'This catch block handles all Exception types.
 'Details of the exception, in this case, are in the "ex" variable.
 'You can show the error in a MessageBox with the below line.
 MessageBox.Show(ex.Message)
Finally
 'A finally block is always executed, regardless of if an Exception occurred.
End Try

Example Code:

Try
 Dim obj = Nothing
 Dim prop = obj.Name 'This line will throw a NullReferenceException

 Console.WriteLine("Test.") ' This line will NOT be executed
Catch ex As System.IO.IOException
 ' Code that reacts to IOException.
Catch ex As NullReferenceException
 ' Code that reacts to a NullReferenceException
 Console.WriteLine("NullReferenceException: " & ex.Message)
 Console.WriteLine("Stack Trace: " & ex.StackTrace)
Catch ex As Exception
 ' Code that reacts to any other exception.
Finally
 ' This will always be run, regardless of if an exception is thrown.
 Console.WriteLine("Completed")
End Try

Section 31.2: Creating custom exception and throwing
You can create a custom exception and throw them during the execution of your function. As a general practice you
should only throw an exception when your function could not achieve its defined functionality.

Private Function OpenDatabase(Byval Server as String, Byval User as String, Byval Pwd as String)
 if Server.trim="" then
 Throw new Exception("Server Name cannot be blank")
 elseif User.trim ="" then
 Throw new Exception("User name cannot be blank")
 elseif Pwd.trim="" then
 Throw new Exception("Password cannot be blank")
 endif

 'Here add codes for connecting to the server

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 82

End function

Section 31.3: Try Catch in Database Operation
You can use Try..Catch to rollback database operation by placing the rollback statement at the Catch Segment.

 Try
 'Do the database operation...
 xCmd.CommandText = "INSERT into"
 xCmd.ExecuteNonQuery()

 objTrans.Commit()
 conn.Close()
 Catch ex As Exception
 'Rollback action when something goes off
 objTrans.Rollback()
 conn.Close()
 End Try

Section 31.4: The Un-catchable Exception
Although Catch ex As Exception claims that it can handle all exceptions - there are one exception (no pun
intended).

Imports System
Static Sub StackOverflow() ' Again no pun intended
 StackOverflow()
End Sub
Static Sub Main()
 Try
 StackOverflow()
 Catch ex As Exception
 Console.WriteLine("Exception caught!")
 Finally
 Console.WriteLine("Finally block")
 End Try
End Sub

Oops... There is an un-caught System.StackOverflowException while the console didn't even print out anything!
According to MSDN,

Starting with the .NET Framework 2.0, you can’t catch a StackOverflowException object with a try/catch
block, and the corresponding process is terminated by default. Consequently, you should write your code
to detect and prevent a stack overflow.

So, System.StackOverflowException is un-catchable. Beware of that!

Section 31.5: Critical Exceptions
Generally most of the exceptions are not that critical, but there are some really serious exceptions that you might
not be capable to handle, such as the famous System.StackOverflowException. However, there are others that
might get hidden by Catch ex As Exception, such as System.OutOfMemoryException,
System.BadImageFormatException and System.InvalidProgramException. It is a good programming practice to
leave these out if you cannot correctly handle them. To filter out these exceptions, we need a helper method:

https://msdn.microsoft.com/en-us/library/system.stackoverflowexception(v=vs.110).aspx#Remarks
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 83

Public Shared Function IsCritical(ex As Exception) As Boolean
 Return TypeOf ex Is OutOfMemoryException OrElse
 TypeOf ex Is AppDomainUnloadedException OrElse
 TypeOf ex Is AccessViolationException OrElse
 TypeOf ex Is BadImageFormatException OrElse
 TypeOf ex Is CannotUnloadAppDomainException OrElse
 TypeOf ex Is ExecutionEngineException OrElse ' Obsolete one, but better to include
 TypeOf ex Is InvalidProgramException OrElse
 TypeOf ex Is System.Threading.ThreadAbortException
End Function

Usage:

Try
 SomeMethod()
Catch ex As Exception When Not IsCritical(ex)
 Console.WriteLine("Exception caught: " & ex.Message)
End Try

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 84

Chapter 32: OOP Keywords
Section 32.1: Defining a class
Classes are vital aspects of OOP. A class is like the "blueprint" of an object. An object has the properties of a class,
but the characteristics are not defined within the class itself. As each object can be different, they define their own
characteristics.

Public Class Person
End Class

Public Class Customer
End Class

A class can also contain subclasses. A subclass inherits the same properties and behaviors as its parent class, but
can have its own unique properties and classes.

Section 32.2: Inheritance Modifiers (on classes)
Inherits

Specifies the base (or parent) class

Public Class Person
End Class

Public Class Customer
 Inherits Person

End Class

'One line notation
Public Class Student : Inherits Person
End Class

Possible objects:

Dim p As New Person
Dim c As New Customer
Dim s As New Student

NotInheritable

Prevents programmers from using the class as a base class.

Public NotInheritable Class Person
End Class

Possible objects:

Dim p As New Person

MustInherit

Specifies that the class is intended for use as a base class only. (Abstract class)

Public MustInherit Class Person

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 85

End Class

Public Class Customer
 Inherits Person
End Class

Possible objects:

Dim c As New Customer

Section 32.3: Inheritance Modifiers (on properties and
methods)
Overridable

Allows a property or method in a class to be overridden in a derived class.

Public Class Person
 Public Overridable Sub DoSomething()
 Console.WriteLine("Person")
 End Sub
End Class

Overrides

Overrides an Overridable property or method defined in the base class.

Public Class Customer
 Inherits Person

 'Base Class must be Overridable
 Public Overrides Sub DoSomething()
 Console.WriteLine("Customer")
 End Sub
End Class

NotOverridable

Prevents a property or method from being overridden in an inheriting class. Default behaviour. Can only be
declared on overrides methods

Public Class Person

 Public Overridable Sub DoSomething()
 Console.WriteLine("Person")
 End Sub

End Class

Public Class Customer
 Inherits Person

 Public NotOverridable Overrides Sub DoSomething()
 Console.WriteLine("Customer")
 End Sub

End Class

Public Class DetailedCustomer
 Inherits Customer

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 86

 'DoSomething can't be overridden
End Class

Example Usage:

Dim p As New Person
p.DoSomething()

Dim c As New Customer
c.DoSomething()

Dim d As New DetailedCustomer
d.DoSomething()

Output:

Person
Customer
Customer

MustOverride

Requires that a derived class override the property or method.

MustOverride methods must be declared in MustInherit classes.

Public MustInherit Class Person

 Public MustOverride Sub DoSomething()
 'No method definition here

End Class

Public Class Customer
 Inherits Person

 'DoSomething must be overridden
 Public Overrides Sub DoSomething()
 Console.WriteLine("Customer")
 End Sub

End Class

Example Usage:

Dim c As New Customer
c.DoSomething()

Output:

Customer

Section 32.4: MyBase
The MyBase keyword behaves like an object variable that refers to the base class of the current instance of a class.

Public Class Person
 Public Sub DoSomething()

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 87

 Console.WriteLine("Person")
 End Sub
End Class

Public Class Customer
 Inherits Person

 Public Sub DoSomethingElse()
 MyBase.DoSomething()
 End Sub

End Class

Usage example:

Dim p As New Person
p.DoSomething()

Console.WriteLine("----")

Dim c As New Customer
c.DoSomething()
c.DoSomethingElse()

Output:

Person

Person
Person

Section 32.5: Me vs MyClass
Me uses the current object instance.

MyClass uses the memberdefinition in the class where the member is called

Class Person
 Public Overridable Sub DoSomething()
 Console.WriteLine("Person")
 End Sub

 Public Sub useMe()
 Me.DoSomething()
 End Sub

 Public Sub useMyClass()
 MyClass.DoSomething()
 End Sub
End Class

Class Customer
 Inherits Person

 Public Overrides Sub DoSomething()
 Console.WriteLine("Customer")
 End Sub
End Class

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 88

Example Usage:

Dim c As New Customer
c.useMe()
c.useMyClass()

Output:

Customer
Person

Section 32.6: Overloading
Overloading is the creation of more than one procedure, instance constructor, or property in a class with the same
name but different argument types.

Class Person
 Overloads Sub Display(ByVal theChar As Char)
 ' Add code that displays Char data.
 End Sub

 Overloads Sub Display(ByVal theInteger As Integer)
 ' Add code that displays Integer data.
 End Sub

 Overloads Sub Display(ByVal theDouble As Double)
 ' Add code that displays Double data.
 End Sub
End Class

Section 32.7: Shadows
It redeclares a member that is not overridable. Only calls to the instance will be affected. Code inside the base
classes will not be affected by this.

Public Class Person
 Public Sub DoSomething()
 Console.WriteLine("Person")
 End Sub

 Public Sub UseMe()
 Me.DoSomething()
 End Sub
End Class
Public Class Customer
 Inherits Person
 Public Shadows Sub DoSomething()
 Console.WriteLine("Customer")
 End Sub

End Class

Example usage:

Dim p As New Person
Dim c As New Customer

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 89

p.UseMe()
c.UseMe()
Console.WriteLine("----")
p.DoSomething()
c.DoSomething()

Output:

Person
Person

Person
Customer

Pitfalls:

Example1, Creating a new object through a generic. Which function will be used??

Public Sub CreateAndDoSomething(Of T As {Person, New})()
 Dim obj As New T
 obj.DoSomething()
End Sub

example usage:

Dim p As New Person
p.DoSomething()
Dim s As New Student
s.DoSomething()
Console.WriteLine("----")
CreateAndDoSomething(Of Person)()
CreateAndDoSomething(Of Student)()

Output: By intuition the result should be the same. Yet that is not true.

Person
Student

Person
Person

Example 2:

Dim p As Person
Dim s As New Student
p = s
p.DoSomething()
s.DoSomething()

Output: By intuition you could think that p and s are equal and will behave equal. Yet that is not true.

Person
Student

In this simple examples it is easy to learn the strange behaviour of Shadows. But in real-life it brings a lot of

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 90

surprises. It is advisably to prevent the usage of shadows. One should use other alternatives as much as possible
(overrides etc..)

Section 32.8: Interfaces
Public Interface IPerson
 Sub DoSomething()
End Interface

Public Class Customer
 Implements IPerson
 Public Sub DoSomething() Implements IPerson.DoSomething
 Console.WriteLine("Customer")
 End Sub

End Class

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 91

Chapter 33: Extension methods
Section 33.1: Creating an extension method
Extension methods are useful to extend the behaviour of libraries we don't own.

They are used similar to instance methods thanks to the compiler's syntactic sugar:

Sub Main()
 Dim stringBuilder = new StringBuilder()

 'Extension called directly on the object.
 stringBuilder.AppendIf(true, "Condition was true")

 'Extension called as a regular method. This defeats the purpose
 'of an extension method but should be noted that it is possible.
 AppendIf(stringBuilder, true, "Condition was true")

End Sub

<Extension>
Public Function AppendIf(stringBuilder As StringBuilder, condition As Boolean, text As String) As
StringBuilder
 If(condition) Then stringBuilder.Append(text)

 Return stringBuilder
End Function

To have a usable extension method, the method needs the Extension attribute and needs to be declared in a
Module.

Section 33.2: Making the language more functional with
extension methods
A good use of extension method is to make the language more functional

Sub Main()
 Dim strings = { "One", "Two", "Three" }

 strings.Join(Environment.NewLine).Print()
End Sub

<Extension>
Public Function Join(strings As IEnumerable(Of String), separator As String) As String
 Return String.Join(separator, strings)
End Function

<Extension>
Public Sub Print(text As String)
 Console.WriteLine(text)
End Sub

Section 33.3: Getting Assembly Version From Strong Name
Example of calling an extension method as an extension and as a regular method.

public Class MyClass

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 92

 Sub Main()

 'Extension called directly on the object.
 Dim Version = Assembly.GetExecutingAssembly.GetVersionFromAssembly()

 'Called as a regular method.
 Dim Ver = GetVersionFromAssembly(SomeOtherAssembly)

 End Sub
End Class

The Extension Method in a Module. Make the Module Public if extensions are compiled to a dll and will be
referenced in another assembly.

Public Module Extensions
 ''' <summary>
 ''' Returns the version number from the specified assembly using the assembly's strong name.
 ''' </summary>
 ''' <param name="Assy">[Assembly] Assembly to get the version info from.</param>
 ''' <returns>[String]</returns>
 <Extension>
 Friend Function GetVersionFromAssembly(ByVal Assy As Assembly) As String
 Return Split(Split(Assy.FullName,",")(1),"=")(1)
 End Function
End Module

Section 33.4: Padding Numerics
Public Module Usage
 Public Sub LikeThis()
 Dim iCount As Integer
 Dim sCount As String

 iCount = 245
 sCount = iCount.PadLeft(4, "0")

 Console.WriteLine(sCount)
 Console.ReadKey()
 End Sub
End Module

Public Module Padding
 <Extension>
 Public Function PadLeft(Value As Integer, Length As Integer) As String
 Return Value.PadLeft(Length, Space(Length))
 End Function

 <Extension>
 Public Function PadRight(Value As Integer, Length As Integer) As String
 Return Value.PadRight(Length, Space(Length))
 End Function

 <Extension>
 Public Function PadLeft(Value As Integer, Length As Integer, Character As Char) As String

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 93

 Return CStr(Value).PadLeft(Length, Character)
 End Function

 <Extension>
 Public Function PadRight(Value As Integer, Length As Integer, Character As Char) As String
 Return CStr(Value).PadRight(Length, Character)
 End Function
End Module

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 94

Chapter 34: Reflection
Section 34.1: Retrieve Properties for an Instance of a Class
Imports System.Reflection

Public Class PropertyExample

 Public Function GetMyProperties() As PropertyInfo()
 Dim objProperties As PropertyInfo()
 objProperties = Me.GetType.GetProperties(BindingFlags.Public Or BindingFlags.Instance)
 Return objProperties
 End Function

 Public Property ThisWillBeRetrieved As String = "ThisWillBeRetrieved"

 Private Property ThisWillNot As String = "ThisWillNot"

 Public Shared Property NeitherWillThis As String = "NeitherWillThis"

 Public Overrides Function ToString() As String
 Return String.Join(",", GetMyProperties.Select(Function(pi) pi.Name).ToArray)
 End Function
End Class

The Parameter of GetProperties defines which kinds of Properties will be returned by the function. Since we pass
Public and Instance, the method will return only properties that are both public and non-shared. See The Flags
attribute for and explanation on how Flag-enums can be combined.

Section 34.2: Get a method and invoke it
Static method:

Dim parseMethod = GetType(Integer).GetMethod("Parse",{GetType(String)})
Dim result = DirectCast(parseMethod.Invoke(Nothing,{"123"}), Integer)

Instance method:

 Dim instance = "hello".ToUpper
 Dim method = Gettype(String).GetMethod("ToUpper",{})
 Dim result = method.Invoke(instance,{})
 Console.WriteLine(result) 'HELLO

Section 34.3: Create an instance of a generic type
 Dim openListType = GetType(List(Of))
 Dim typeParameters = {GetType(String)}
 Dim stringListType = openListType.MakeGenericType(typeParameters)
 Dim instance = DirectCast(Activator.CreateInstance(stringListType), List(Of String))
 instance.Add("Hello")

Section 34.4: Get the members of a type
Dim flags = BindingFlags.Static Or BindingFlags.Public Or BindingFlags.Instance
Dim members = GetType(String).GetMembers(flags)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 95

For Each member In members
 Console.WriteLine($"{member.Name}, ({member.MemberType})")
Next

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 96

Chapter 35: Visual Basic 14.0 Features
Visual Basic 14 is the version of Visual Basic that was shipped as part of Visual Studio 2015.

This version was rewritten from scratch in about 1.3 million lines of VB. Many features were added to remove
common irritations and to make common coding patterns cleaner.

The version number of Visual Basic went straight from 12 to 14, skipping 13. This was done to keep VB in line with
the version numbering of Visual Studio itself.

Section 35.1: Null conditional operator
To avoid verbose null checking, the ?. operator has been introduced in the language.

The old verbose syntax:

If myObject IsNot Nothing AndAlso myObject.Value >= 10 Then

Can be now replaced by the concise:

If myObject?.Value >= 10 Then

The ? operator is particularly powerful when you have a chain of properties. Consider the following:

Dim fooInstance As Foo = Nothing
Dim s As String

Normally you would have to write something like this:

If fooInstance IsNot Nothing AndAlso fooInstance.BarInstance IsNot Nothing Then
 s = fooInstance.BarInstance.Baz
Else
 s = Nothing
End If

But with the ? operator this can be replaced with just:

s = fooInstance?.BarInstance?.Baz

Section 35.2: String interpolation
This new feature makes the string concatenation more readable. This syntax will be compiled to its equivalent
String.Format call.

Without string interpolation:

String.Format("Hello, {0}", name)

With string interpolation:

$"Hello, {name}"

The two lines are equivalent and both get compiled to a call to String.Format.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 97

As in String.Format, the brackets can contain any single expression (call to a method, property, a null coalescing
operator et cetera).

String Interpolation is the preferred method over String.Format because it prevents some runtime errors from
occurring. Consider the following String.Format line:

String.Format("The number of people is {0}/{1}", numPeople)

This will compile, but will cause a runtime error as the compiler does not check that the number of arguments
match the placeholders.

Section 35.3: Read-Only Auto-Properties
Read-only properties were always possible in VB.NET in this format:

Public Class Foo

 Private _MyProperty As String = "Bar"

 Public ReadOnly Property MyProperty As String
 Get
 Return _MyProperty
 End Get
 End Property

End Class

The new version of Visual Basic allows a short hand for the property declaration like so:

Public Class Foo

 Public ReadOnly Property MyProperty As String = "Bar"

End Class

The actual implementation that is generated by the compiler is exactly the same for both examples. The new
method to write it is just a short hand. The compiler will still generate a private field with the format:
_<PropertyName> to back the read-only property.

Section 35.4: NameOf operator
The NameOf operator resolves namespaces, types, variables and member names at compile time and replaces them
with the string equivalent.

One of the use cases:

Sub MySub(variable As String)
 If variable Is Nothing Then Throw New ArgumentNullException("variable")
End Sub

The old syntax will expose the risk of renaming the variable and leaving the hard-coded string to the wrong value.

Sub MySub(variable As String)
 If variable Is Nothing Then Throw New ArgumentNullException(NameOf(variable))
End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 98

With NameOf, renaming the variable only will raise a compiler error. This will also allow the renaming tool to rename
both with a single effort.

The NameOf operator only uses the last component of the reference in the brackets. This is important when
handling something like namespaces in the NameOf operator.

Imports System

Module Module1
 Sub WriteIO()
 Console.WriteLine(NameOf(IO)) 'displays "IO"
 Console.WriteLine(NameOf(System.IO)) 'displays "IO"
 End Sub
End Module

The operator also uses the name of the reference that is typed in without resolving any name changing imports. For
example:

Imports OldList = System.Collections.ArrayList

Module Module1
 Sub WriteList()
 Console.WriteLine(NameOf(OldList)) 'displays "OldList"
 Console.WriteLine(NameOf(System.Collections.ArrayList)) 'displays "ArrayList"
 End Sub
End Module

Section 35.5: Multiline string literals
VB now allows string literals that split over multiple lines.

Old syntax:

Dim text As String = "Line1" & Environment.NewLine & "Line2"

New syntax:

Dim text As String = "Line 1
Line 2"

Section 35.6: Partial Modules and Interfaces
Similar to partial classes the new version of Visual Basic is now able to handle partial modules and partial
interfaces. The syntax and behaviour is exactly the same as it would be for partial classes.

A partial module example:

Partial Module Module1
 Sub Main()
 Console.Write("Ping -> ")
 TestFunktion()
 End Sub
End Module

Partial Module Module1
 Private Sub TestFunktion()
 Console.WriteLine("Pong")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 99

 End Sub
End Module

And a partial interface:

Partial Interface Interface1
 Sub Methode1()
End Interface

Partial Interface Interface1
 Sub Methode2()
End Interface

Public Class Class1
 Implements Interface1
 Public Sub Methode1() Implements Interface1.Methode1
 Throw New NotImplementedException()
 End Sub

 Public Sub Methode2() Implements Interface1.Methode2
 Throw New NotImplementedException()
 End Sub
End Class

Just like for partial classes the definitions for the partial modules and interfaces have to be located in the same
namespace and the same assembly. This is because the partial parts of the modules and interfaces are merged
during the compilation and the compiled assembly does not contain any indication that the original definition of
the module or interface was split.

Section 35.7: Comments after implicit line continuation
VB 14.0 introduces the ability to add comments after implicit line continuation.

Dim number =
 From c As Char 'Comment
 In "dj58kwd92n4" 'Comment
 Where Char.IsNumber(c) 'Comment
 Select c 'Comment

Section 35.8: #Region directive improvements
#Region directive can now be placed inside methods and can even span over methods, classes and modules.

#Region "A Region Spanning A Class and Ending Inside Of A Method In A Module"
 Public Class FakeClass
 'Nothing to see here, just a fake class.
 End Class

 Module Extensions

 ''' <summary>
 ''' Checks the path of files or directories and returns [TRUE] if it exists.
 ''' </summary>
 ''' <param name="Path">[Sting] Path of file or directory to check.</param>
 ''' <returns>[Boolean]</returns>
 <Extension>
 Public Function PathExists(ByVal Path As String) As Boolean
 If My.Computer.FileSystem.FileExists(Path) Then Return True

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 100

 If My.Computer.FileSystem.DirectoryExists(Path) Then Return True
 Return False
 End Function

 ''' <summary>
 ''' Returns the version number from the specified assembly using the assembly's strong name.
 ''' </summary>
 ''' <param name="Assy">[Assembly] Assembly to get the version info from.</param>
 ''' <returns>[String]</returns>
 <Extension>
 Friend Function GetVersionFromAssembly(ByVal Assy As Assembly) As String
#End Region
 Return Split(Split(Assy.FullName, ",")(1), "=")(1)
 End Function
End Module

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 101

Chapter 36: LINQ
LINQ (Language Integrated Query) is an expression that retrieves data from a data source. LINQ simplifies this
situation by offering a consistent model for working with data across various kinds of data sources and formats. In
a LINQ query, you are always working with objects. You use the same basic coding patterns to query and transform
data in XML documents, SQL databases, ADO.NET Datasets, .NET collections, and any other format for which a LINQ
provider is available.

Section 36.1: Selecting from array with simple condition
Dim sites() As String = {"Stack Overflow", "Super User", "Ask Ubuntu", "Hardware
Recommendations"}
Dim query = From x In sites Where x.StartsWith("S")
' result = "Stack Overflow", "Super User"

Query will be enumerable object containing Stack Overflow and Super User. x in the query is iterating variable
where will be stored each object checked by Where clause.

Section 36.2: Mapping array by Select clause
Dim sites() As String = {"Stack Overflow",
 "Super User",
 "Ask Ubuntu",
 "Hardware Recommendations"}
Dim query = From x In sites Select x.Length
' result = 14, 10, 10, 24

Query result will be enumerable object containing lengths of strings in input array. In this example this would be
values 14, 10, 10, 24. x in the query is iterating variable where will be stored each object from the input array.

Section 36.3: Ordering output
Dim sites() As String = {"Stack Overflow",
 "Super User",
 "Ask Ubuntu",
 "Hardware Recommendations"}

Dim query = From x In sites
 Order By x.Length

' result = "Super User", "Ask Ubuntu", "Stack Overflow", "Hardware Recommendations"

OrderBy clause orders the output by the value returned from the clause. In this example it is Length of each string.
Default output order is ascending. If you need descending you could specify Descending keyword after clause.

Dim query = From x In sites
 Order By x.Length Descending

Section 36.4: Generating Dictionary From IEnumerable
' Just setting up the example
Public Class A
 Public Property ID as integer
 Public Property Name as string

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 102

 Public Property OtherValue as Object
End Class

Public Sub Example()
 'Setup the list of items
 Dim originalList As New List(Of A)
 originalList.Add(New A() With {.ID = 1, .Name = "Item 1", .OtherValue = "Item 1 Value"})
 originalList.Add(New A() With {.ID = 2, .Name = "Item 2", .OtherValue = "Item 2 Value"})
 originalList.Add(New A() With {.ID = 3, .Name = "Item 3", .OtherValue = "Item 3 Value"})

 'Convert the list to a dictionary based on the ID
 Dim dict As Dictionary(Of Integer, A) = originalList.ToDictionary(function(c) c.ID, function(c)
c)

 'Access Values From The Dictionary
 console.Write(dict(1).Name) ' Prints "Item 1"
 console.Write(dict(1).OtherValue) ' Prints "Item 1 Value"
End Sub

Section 36.5: Projection
' sample data
Dim sample = {1, 2, 3, 4, 5}

' using "query syntax"
Dim squares = From number In sample Select number * number

' same thing using "method syntax"
Dim squares = sample.Select (Function (number) number * number)

We can project multiple result at once too

Dim numbersAndSquares =
 From number In sample Select number, square = number * number

Dim numbersAndSquares =
 sample.Select (Function (number) New With {Key number, Key .square = number * number})

Section 36.6: Getting distinct values (using the Distinct
method)
Dim duplicateFruits = New List(Of String) From {"Grape", "Apple", "Grape", "Apple", "Grape"}
'At this point, duplicateFruits.Length = 5

Dim uniqueFruits = duplicateFruits.Distinct();
'Now, uniqueFruits.Count() = 2
'If iterated over at this point, it will contain 1 each of "Grape" and "Apple"

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 103

Chapter 37: FTP server
Section 37.1: Download file from FTP server
My.Computer.Network.DownloadFile("ftp://server.my/myfile.txt", "donwloaded_file.txt")

This command download myfile.txt file from server named server.my and saves it as donwloaded_file.txt into
working directory. You can specify absolute path for downloaded file.

Section 37.2: Download file from FTP server when login
required
My.Computer.Network.DownloadFile("ftp://srv.my/myfile.txt", "donwload.txt", "Peter", "1234")

This command download myfile.txt file from server named srv.my and saves it as donwload.txt into working
directory. You can specify absolute path for downloaded file. File is download by user Peter with password 1234.

Section 37.3: Upload file to FTP server
My.Computer.Network.UploadFile("example.txt", "ftp://server.my/server_example.txt")

This command upload example.txt file from working directory (you could specify absolute path if you want) to
server named server.my. File stored on the server will be named server_example.txt.

Section 37.4: Upload file to FTP server when login required
My.Computer.Network.UploadFile("doc.txt", "ftp://server.my/on_server.txt", "Peter", "1234")

This command upload doc.txt file from working directory (you could specify absolute path if you want) to server
named server.my. File stored on the server will be named server_example.txt. Fill is send on the server by user
Peter and password 1234.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 104

Chapter 38: Working with Windows Forms
Section 38.1: Using the default Form instance
VB.NET offers default Form instances. The developer does not need to create the instance as it is created behind
the scenes. However, it is not preferable to use the default instance all but the simplest programs.

Public Class Form1

 Public Sub Foo()
 MessageBox.Show("Bar")
 End Sub

End Class

Module Module1

 Public Sub Main()
 ' Default instance
 Form1.Foo()
 ' New instance
 Dim myForm1 As Form1 = New Form1()
 myForm1.Foo()

 End Sub

End Module

See also:

Do you have to explicitly create instance of form in VB.NET?
Why is there a default instance of every form in VB.Net but not in C#?

Section 38.2: Passing Data From One Form To Another
Sometimes you might want to pass information that has been generated in one form, to another form for
additional use. This is useful for forms that display a search tool, or a settings page among many other uses.

Let's say you want to pass a DataTable between a form that is already open (MainForm) and a new form (NewForm):

In The MainForm:

 Private Sub Open_New_Form()
 Dim NewInstanceOfForm As New NewForm(DataTable1)
 NewInstanceOfForm.ShowDialog()
 End Sub

In The NewForm

Public Class NewForm
 Dim NewDataTable as Datatable

 Public Sub New(PassedDataTable As Datatable)
 InitializeComponent()
 NewDataTable= PassedDataTable
 End Sub

http://stackoverflow.com/a/22367129/832052
http://stackoverflow.com/questions/4698538/why-is-there-a-default-instance-of-every-form-in-vb-net-but-not-in-c
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 105

End Class

Now when the NewForm is opened, it is passed DataTable1 from MainForm and stored as NewDataTable in NewForm
for use by that form.

This can be extremely useful when trying to pass large amounts of information between forms, especially when
combining all of the information in to a single ArrayList and passing the ArrayList to the new form.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 106

Chapter 39: Google Maps in a Windows
Form
Section 39.1: How to use a Google Map in a Windows Form
The first part of this example explains how to implement it. In the second, I will explain how it works. This tries to be
a general example. The template for the map (see step 3) and the example functions are fully customizable.

################################# IMPLEMENTATION #################################

Step 1. Firstly, create a new project and select Windows Form Application. Let's leave its name as "Form1".

Step 2. Add a WebBrowser control (which will hold your map) to your Form1. Let's call it "wbmap"

Step 3. Create a .html file named "googlemap_template.html" with your favourite text editor and paste the
following code:

googlemap_template.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge"/>
 <style type="text/css">
 html, body {

http://i.stack.imgur.com/JMiqQ.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 107

 height: 100%;
 margin: 0;
 padding: 0;
 }
 #gmap {
 height: 100%;
 }
 </style>
 <script type="text/javascript" src="http://maps.google.com/maps/api/js?sensor=false"></script>
 <script type="text/javascript">
 function initialize() {
 //Use window.X instead of var X to make a variable globally available
 window.markers = new Array();
 window.marker_data = [[MARKER_DATA]];
 window.gmap = new google.maps.Map(document.getElementById('gmap'), {
 zoom: 15,
 center: new google.maps.LatLng(marker_data[0][0], marker_data[0][1]),
 mapTypeId: google.maps.MapTypeId.ROADMAP
 });
 var infowindow = new google.maps.InfoWindow();
 var newmarker, i;
 for (i = 0; i < marker_data.length; i++) {
 if (marker_data[0].length == 2) {
 newmarker = new google.maps.Marker({
 position: new google.maps.LatLng(marker_data[i][0], marker_data[i][1]),
 map: gmap
 });
 } else if (marker_data[0].length == 3) {
 newmarker = new google.maps.Marker({
 position: new google.maps.LatLng(marker_data[i][0], marker_data[i][1]),
 map: gmap,
 title: (marker_data[i][2])
 });
 } else {
 newmarker = new google.maps.Marker({
 position: new google.maps.LatLng(marker_data[i][0], marker_data[i][1]),
 map: gmap,
 title: (marker_data[i][2]),
 icon: (marker_data[i][3])
 });
 }
 google.maps.event.addListener(newmarker, 'click', (function (newmarker, i) {
 return function () {
 if (newmarker.title) {
 infowindow.setContent(newmarker.title);
 infowindow.open(gmap, newmarker);
 }
 gmap.setCenter(newmarker.getPosition());
 // Calling functions written in the WF
 window.external.showVbHelloWorld();
 window.external.getMarkerDataFromJavascript(newmarker.title,i);
 }
 })(newmarker, i));
 markers[i] = newmarker;
 }
 }
 google.maps.event.addDomListener(window, 'load', initialize);
 </script>
 <script type="text/javascript">
 // Function triggered from the WF with no arguments
 function showJavascriptHelloWorld() {
 alert("Hello world in HTML from WF");

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 108

 }
 </script>
 <script type="text/javascript">
 // Function triggered from the WF with a String argument
 function focusMarkerFromIdx(idx) {
 google.maps.event.trigger(markers[idx], 'click');
 }
 </script>
 </head>
 <body>
 <div id="gmap"></div>
 </body>
</html>

This will serve as our map template. I will explain how it works later.

Step 4. Add the googlemap_template.hmtl file to your project (right click on your project->add->existing item)

Step 5. Once it appears in your Solution Explorer, set its properties to:

Build Action -> Embedded Resource
Custom Tool Namespace -> write the name of the project

Step 6. Add a new class (right click on your project->add->class). In my example I'll call it GoogleMapHelper.

http://i.stack.imgur.com/lFkbB.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 109

Step 7. Paste the following code into your class:

GoogleMapHelper.vb

 Imports System.IO
 Imports System.Reflection
 Imports System.Text

 Public Class GoogleMapHelper

 ' 1- googlemap_template.html must be copied in the main project folder
 ' 2- add the file into the Visual Studio Solution Explorer (add existing file)
 ' 3- set the properties of the file to:
 ' Build Action -> Embedded Resource
 ' Custom Tool Namespace -> write the name of the project

 Private Const ICON_FOLDER As String = "marker_icons/" 'images must be stored in a folder inside
 Debug/Release folder
 Private Const MAP_TEMPLATE As String = "WindowsApplication1.googlemap_template.html"
 Private Const TEXT_TO_REPLACE_MARKER_DATA As String = "[[MARKER_DATA]]"
 Private Const TMP_NAME As String = "tmp_map.html"

http://i.stack.imgur.com/hHvOM.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 110

 Private mWebBrowser As WebBrowser

 'MARKER POSITIONS
 Private mPositions As Double(,) 'lat, lon
 ' marker data allows different formats to include lat,long and optionally title and icon:
 ' op1: mMarkerData = New String(N-1, 1) {{lat1, lon1}, {lat2, lon2}, {latN, lonN}}
 ' op2: mMarkerData = New String(N-1, 2) {{lat1, lon1,'title1'}, {lat2, lon2,'title2'}, {latN,
lonN, 'titleN'}}
 ' op3: mMarkerData = New String(N-1, 3) {{lat1, lon1,'title1','image1.png'}, {lat2,
lon2,'title2','image2.png'}, {latN, lonN, 'titleN','imageN.png'}}
 Private mMarkerData As String(,) = Nothing

 Public Sub New(ByRef wb As WebBrowser, pos As Double(,))
 mWebBrowser = wb
 mPositions = pos
 mMarkerData = getMarkerDataFromPositions(pos)
 End Sub

 Public Sub New(ByRef wb As WebBrowser, md As String(,))
 mWebBrowser = wb
 mMarkerData = md
 End Sub

 Public Sub loadMap()
 mWebBrowser.Navigate(getMapTemplate())
 End Sub

 Private Function getMapTemplate() As String

 If mMarkerData Is Nothing Or mMarkerData.GetLength(1) > 4 Then
 MessageBox.Show("Marker data has not the proper size. It must have 2, 3 o 4 columns")
 Return Nothing
 End If

 Dim htmlTemplate As New StringBuilder()
 Dim tmpFolder As String = Environment.GetEnvironmentVariable("TEMP")
 Dim dataSize As Integer = mMarkerData.GetLength(1) 'number of columns
 Dim mMarkerDataAsText As String = String.Empty
 Dim myresourcePath As String = My.Resources.ResourceManager.BaseName
 Dim myresourcefullPath As String = Path.GetFullPath(My.Resources.ResourceManager.BaseName)
 Dim localPath = myresourcefullPath.Replace(myresourcePath, "").Replace("\", "/") &
ICON_FOLDER

 htmlTemplate.AppendLine(getStringFromResources(MAP_TEMPLATE))
 mMarkerDataAsText = "["

 For i As Integer = 0 To mMarkerData.GetLength(0) - 1
 If i <> 0 Then
 mMarkerDataAsText += ","
 End If
 If dataSize = 2 Then 'lat,lon
 mMarkerDataAsText += "[" & mMarkerData(i, 0) & "," + mMarkerData(i, 1) & "]"
 ElseIf dataSize = 3 Then 'lat,lon and title
 mMarkerDataAsText += "[" & mMarkerData(i, 0) & "," + mMarkerData(i, 1) & ",'" &
mMarkerData(i, 2) & "']"
 ElseIf dataSize = 4 Then 'lat,lon,title and image
 mMarkerDataAsText += "[" & mMarkerData(i, 0) & "," + mMarkerData(i, 1) & ",'" &
mMarkerData(i, 2) & "','" & localPath & mMarkerData(i, 3) & "']" 'Ojo a las comillas simples en las
columnas 3 y 4

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 111

 End If
 Next

 mMarkerDataAsText += "]"
 htmlTemplate.Replace(TEXT_TO_REPLACE_MARKER_DATA, mMarkerDataAsText)

 Dim tmpHtmlMapFile As String = (tmpFolder & Convert.ToString("\")) + TMP_NAME
 Dim existsMapFile As Boolean = False
 Try
 existsMapFile = createTxtFile(tmpHtmlMapFile, htmlTemplate)
 Catch ex As Exception
 MessageBox.Show("Error writing temporal file", "Writing Error", MessageBoxButtons.OK,
MessageBoxIcon.[Error])
 End Try

 If existsMapFile Then
 Return tmpHtmlMapFile
 Else
 Return Nothing
 End If
 End Function

 Private Function getMarkerDataFromPositions(pos As Double(,)) As String(,)
 Dim md As String(,) = New String(pos.GetLength(0) - 1, 1) {}
 For i As Integer = 0 To pos.GetLength(0) - 1
 md(i, 0) = pos(i, 0).ToString("g", New System.Globalization.CultureInfo("en-US"))
 md(i, 1) = pos(i, 1).ToString("g", New System.Globalization.CultureInfo("en-US"))
 Next
 Return md
 End Function

 Private Function getStringFromResources(resourceName As String) As String
 Dim assem As Assembly = Me.[GetType]().Assembly

 Using stream As Stream = assem.GetManifestResourceStream(resourceName)
 Try
 Using reader As New StreamReader(stream)
 Return reader.ReadToEnd()
 End Using
 Catch e As Exception
 Throw New Exception((Convert.ToString("Error de acceso al Recurso '") &
resourceName) + "'" & vbCr & vbLf + e.ToString())
 End Try
 End Using
 End Function

 Private Function createTxtFile(mFile As String, content As StringBuilder) As Boolean
 Dim mPath As String = Path.GetDirectoryName(mFile)
 If Not Directory.Exists(mPath) Then
 Directory.CreateDirectory(mPath)
 End If
 If File.Exists(mFile) Then
 File.Delete(mFile)
 End If
 Dim sw As StreamWriter = File.CreateText(mFile)
 sw.Write(content.ToString())
 sw.Close()
 Return True
 End Function
 End Class

Note: The MAP_TEMPLATE constant must include the name of your project

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 112

Step 8. Now we can use our GoogleMapHelper class to load the map into our webbrowser by simply creating and
instance and calling its loadMap() method. How you build your markerData is up to you. In this example, for
clarification, I write them by hand. There are 3 options to define the marker data (see GoogleMapHelper class
comments). Note that if you use the third option (including title and icons) you must create a folder called
"marker_icons" (or whatever you define in the GoogleMapHelper constant ICON_FOLDER) in your Debug/Release
folder and place there your .png files. In my case:

I created two buttons in my Form1 to illustrate how the map and the WF interact. Here is how it looks:

And here is the code:

Form1.vb

Imports System.IO
Imports System.Reflection
Imports System.Security.Permissions
Imports System.Text
<PermissionSet(SecurityAction.Demand, Name:="FullTrust")>
<System.Runtime.InteropServices.ComVisible(True)>
Public Class Form1

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 Me.wbmap.ObjectForScripting = Me

http://i.stack.imgur.com/1pZj2.png
http://i.stack.imgur.com/fo8cN.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 113

 Dim onlyPositions As Double(,) = New Double(2, 1) {{42.13557, -0.40806}, {42.13684, -0.40884},
{42.13716, -0.40729}}
 Dim positonAndTitles As String(,) = New String(2, 2) {{"42.13557", "-0.40806", "marker0"},
{"42.13684", "-0.40884", "marker1"}, {"42.13716", "-0.40729", "marker2"}}
 Dim positonTitlesAndIcons As String(,) = New String(2, 3) {{"42.13557", "-0.40806", "marker0",
"truck_red.png"}, {"42.13684", "-0.40884", "marker1", "truck_red.png"}, {"42.13716", "-0.40729",
"marker2", "truck_red.png"}}

 'Dim gmh As GoogleMapHelper = New GoogleMapHelper(wbmap, onlyPositions)
 'Dim gmh As GoogleMapHelper = New GoogleMapHelper(wbmap, positonAndTitles)
 Dim gmh As GoogleMapHelper = New GoogleMapHelper(wbmap, positonTitlesAndIcons)
 gmh.loadMap()
End Sub

'############################### CALLING JAVASCRIPT METHODS ##############################
'This methods call methods written in googlemap_template.html
Private Sub callMapJavascript(sender As Object, e As EventArgs) Handles Button1.Click
 wbmap.Document.InvokeScript("showJavascriptHelloWorld")
End Sub

Private Sub callMapJavascriptWithArguments(sender As Object, e As EventArgs) Handles Button2.Click
 wbmap.Document.InvokeScript("focusMarkerFromIdx", New String() {2})
End Sub
'###

'############################### METHODS CALLED FROM JAVASCRIPT ##########################
'This methods are called by the javascript defined in googlemap_template.html when some events are
triggered
Public Sub getMarkerDataFromJavascript(title As String, idx As String)
 MsgBox("Title: " & title & " idx: " & idx)
End Sub

Public Sub showVbHelloWorld()
 MsgBox("Hello world in WF from HTML")
End Sub
End Class

IMPORTANT : don't forget to add these lines before your class Form1 definition:

<PermissionSet(SecurityAction.Demand, Name:="FullTrust")>
<System.Runtime.InteropServices.ComVisible(True)>

What they do is to tell the .NET Framework that we want fulltrust and make the class visible to COM so Form1 is
visible to JavaScript.

Also don't forget this in your Form1 load function:

Me.wbmap.ObjectForScripting = Me

It exposes your Form1 class to the JavaScript on the googlemap_template.hmtl page.

Now you can execute and it should be working

################################# HOW IT WORKS#################################

Basically, what our GoogleMapHelper class does is to read our googlemap_template.html, make a temporal copy,
replace the code related to the markers ([[MARKER_DATA]]) and execute the page in the web browser control of our
form. This html loops through all the markers and assigns a 'click' listener to each one. This click function is
obviously fully customizable. In the example it opens an infowindow if the marker has a title, centers the map in

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 114

such marker and calls two external functions that are defined in our Form1 class.

On the other hand, we can define other javascript functions (with or without arguments) in this html to be called
from our Windows Form (by using wbmap.Document.InvokeScript).

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 115

Chapter 40: GDI+
Section 40.1: Draw Shapes
To start drawing a shape you need to define a pen object The Pen accepts two parameters:

Pen Color or Brush1.
Pen Width2.

The Pen Object is used to create an outline of the object you want to draw

After Defining the Pen you can set specific Pen Properties

 Dim pens As New Pen(Color.Purple)
 pens.DashStyle = DashStyle.Dash 'pen will draw with a dashed line
 pens.EndCap = LineCap.ArrowAnchor 'the line will end in an arrow
 pens.StartCap = LineCap.Round 'The line draw will start rounded
 '*Notice* - the Start and End Caps will not show if you draw a closed shape

Then use the graphics object you created to draw the shape

 Private Sub GraphicForm_Paint(sender As Object, e As PaintEventArgs) Handles MyBase.Paint
 Dim pen As New Pen(Color.Blue, 15) 'Use a blue pen with a width of 15
 Dim point1 As New Point(5, 15) 'starting point of the line
 Dim point2 As New Point(30, 100) 'ending point of the line
 e.Graphics.DrawLine(pen, point1, point2)

 e.Graphics.DrawRectangle(pen, 60, 90, 200, 300) 'draw an outline of the rectangle

By default, the pen's width is equal to 1

 Dim pen2 as New Pen(Color.Orange) 'Use an orange pen with width of 1
 Dim origRect As New Rectangle(90, 30, 50, 60) 'Define bounds of arc
 e.Graphics.DrawArc(pen2, origRect, 20, 180) 'Draw arc in the rectangle bounds

End Sub

Section 40.2: Fill Shapes
Graphics.FillShapes draws a shape and fills it in with the color given. Fill Shapes can use

Brush Tool - to fill shape with a solid color1.

Dim rect As New Rectangle(50, 50, 50, 50)
e.Graphics.FillRectangle(Brushes.Green, rect) 'draws a rectangle that is filled with green

e.Graphics.FillPie(Brushes.Silver, rect, 0, 180) 'draws a half circle that is filled with
silver

HatchBrush Tool - to fill shape with a pattern2.

Dim hBrush As New HatchBrush(HatchStyle.ZigZag, Color.SkyBlue, Color.Gray)
'creates a HatchBrush Tool with a background color of blue, foreground color of gray,
'and will fill with a zigzag pattern
Dim rectan As New Rectangle(100, 100, 100, 100)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 116

e.Graphics.FillRectangle(hBrush, rectan)

LinearGradientBrush - to fill shape with a gradient3.

Dim lBrush As New LinearGradientBrush(point1, point2, Color.MediumVioletRed, Color.PaleGreen)
 Dim rect As New Rectangle(50, 50, 200, 200)
 e.Graphics.FillRectangle(lBrush, rect)

TextureBrush - to fill shape with a picture4.

You can choose a picture from resources, an already defined Bitmap, or from a file name

 Dim textBrush As New TextureBrush(New Bitmap("C:\ColorPic.jpg"))
 Dim rect As New Rectangle(400, 400, 100, 100)
 e.Graphics.FillPie(textBrush, rect, 0, 360)

Both the Hatch Brush Tool and LinearGradientBrush import the following statement : Imports
System.Drawing.Drawing2D

Section 40.3: Text
To draw text onto the form use the DrawString Method

When you draw a string you can use any of the 4 brushes listed above

Dim lBrush As New LinearGradientBrush(point1, point2, Color.MediumVioletRed, Color.PaleGreen)
e.Graphics.DrawString("HELLO", New Font("Impact", 60, FontStyle.Bold), lBrush, New Point(40, 400))
'this will draw the word "Hello" at the given point, with a linearGradient Brush

Since you can't define the width or height of the text use Measure Text to check text size

Dim lBrush As New LinearGradientBrush(point1, point2, Color.MediumVioletRed, Color.PaleGreen)
Dim TextSize = e.Graphics.MeasureString("HELLO", New Font("Impact", 60, FontStyle.Bold), lBrush)
'Use the TextSize to determine where to place the string, or if the font needs to be smaller

Ex: You need to draw the word "Test" on top of the form. The form's width is 120. Use this loop to
decrease the font size till it will fit into the forms width

Dim FontSize as Integer = 80
Dim TextSize = e.graphics.measeString("Test", New Font("Impact",FontSize, FontStyle.Bold), new
Brush(colors.Blue, 10)
Do while TextSize.Width >120
FontSize = FontSize -1
TextSize = e.graphics.measeString("Test", New Font("Impact",FontSize, FontStyle.Bold), new
Brush(colors.Blue, 10)
Loop

Section 40.4: Create Graphic Object
There are three ways to create a graphics object

From the Paint Event1.

Every time the control is redrawn (resized, refreshed...) this event is called, use this way if you want the control to

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 117

consistently draw on the control

 'this will work on any object's paint event, not just the form
 Private Sub Form1_Paint(sender as Object, e as PaintEventArgs) Handles Me.Paint
 Dim gra as Graphics
 gra = e.Graphics
 End Sub

Create Graphic2.

This is most often used when you want to create a one time graphic on the control, or you don't want the control to
repaint itself

 Dim btn as New Button
 Dim g As Graphics = btn.CreateGraphics

From an Existing Graphic3.

Use this method when you want to draw and change an existing graphic

 'The existing image can be from a filename, stream or Drawing.Graphic
 Dim image = New Bitmap("C:\TempBit.bmp")
 Dim gr As Graphics = Graphics.FromImage(image)

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 118

Chapter 41: WinForms SpellCheckBox
Example on how to add a spell check box to a WindowsForms application. This example DOES NOT require Word to
be installed nor does it use Word in any way.

It uses WPF Interop using the ElementHost control to create a WPF UserControl from a WPF TextBox. WPF TextBox
has a built in function for spell check. We are going to leverage this built in function rather than relying on an
external program.

Section 41.1: ElementHost WPF TextBox
This example is was modeled after an example that I found on the internet. I can't find the link or I would give the
author credit. I took the sample that I found and modified it to work for my application.

Add the following references:1.

System.Xaml, PresentationCore, PresentationFramework, WindowsBase, and WindowsFormsIntegration

Create a new Class and past this code2.

Imports System
Imports System.ComponentModel
Imports System.ComponentModel.Design.Serialization
Imports System.Windows
Imports System.Windows.Controls
Imports System.Windows.Forms.Integration
Imports System.Windows.Forms.Design

<Designer(GetType(ControlDesigner))> _
Class SpellCheckBox
Inherits ElementHost

Private box As TextBox

Public Sub New()
 box = New TextBox()
 MyBase.Child = box
 AddHandler box.TextChanged, AddressOf box_TextChanged
 box.SpellCheck.IsEnabled = True
 box.VerticalScrollBarVisibility = ScrollBarVisibility.Auto
 Me.Size = New System.Drawing.Size(100, 20)
End Sub

Private Sub box_TextChanged(ByVal sender As Object, ByVal e As EventArgs)
 OnTextChanged(EventArgs.Empty)
End Sub

<DefaultValue("")> _
Public Overrides Property Text() As String
 Get
 Return box.Text
 End Get
 Set(ByVal value As String)
 box.Text = value
 End Set
End Property

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 119

<DefaultValue(True)> _
Public Property MultiLine() As Boolean
 Get
 Return box.AcceptsReturn
 End Get
 Set(ByVal value As Boolean)
 box.AcceptsReturn = value
 End Set
End Property

<DefaultValue(True)> _
Public Property WordWrap() As Boolean
 Get
 Return box.TextWrapping <> TextWrapping.Wrap
 End Get
 Set(ByVal value As Boolean)
 If value Then
 box.TextWrapping = TextWrapping.Wrap
 Else
 box.TextWrapping = TextWrapping.NoWrap
 End If
 End Set
End Property

<DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)> _
Public Shadows Property Child() As System.Windows.UIElement
 Get
 Return MyBase.Child
 End Get
 Set(ByVal value As System.Windows.UIElement)
 '' Do nothing to solve a problem with the serializer !!
 End Set
End Property

End Class

Rebuild the solution.3.

Add a new form.4.

Search the toolbox for your Class name. This example is "SpellCheck". It should be listed under5.
'YourSoulutionName' Components.

Drag the new control to your form6.

Set any of the mapped properties in the forms load event7.

Private Sub form1_Load(sender As Object, e As EventArgs) Handles Me.Load
 spellcheckbox.WordWrap = True
 spellcheckbox.MultiLin = True
 'Add any other property modifiers here...
End Sub

The last thing that you need to do is to change the DPI Awareness of your application. This is because you are7.
using WinForms application. By default all WinForms applications are DPI UNAWARE. Once you execute a
control that has an element host (WPF Interop), the application will now become DPI AWARE. This may or
may not mess with your UI Elements. The solution to this is to FORCE the application to become DPI
UNAWARE. There are 2 ways to do this. The first is through the manifest file and the second is to hard code it
in to your program. If you are using OneClick to deploy your application, you must hard code it, not use the
manifest file or errors will be inevitable.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 120

Both of the following examples can be found at the following: WinForms Scaling at Large DPI Settings - Is It Even
Possible? Thanks to Telerik.com for the great explanation on DPI.

Hard coded DPI Aware code example. This MUST be executed before the first form is initialized. I always
place this in the ApplicationEvents.vb file. You can get to this file by right clicking on your project name in
the solution explorer and choosing "Open". Then choose the application tab on the left and then click on
"View Application Events" on the lower right next to the splash screen drop down.

Namespace My

 ' The following events are available for MyApplication:
 '
 ' Startup: Raised when the application starts, before the startup form is created.
 ' Shutdown: Raised after all application forms are closed. This event is not raised if the
application terminates abnormally.
 ' UnhandledException: Raised if the application encounters an unhandled exception.
 ' StartupNextInstance: Raised when launching a single-instance application and the application is
already active.
 ' NetworkAvailabilityChanged: Raised when the network connection is connected or disconnected.
 Partial Friend Class MyApplication

 Private Enum PROCESS_DPI_AWARENESS
 Process_DPI_Unaware = 0
 Process_System_DPI_Aware = 1
 Process_Per_Monitor_DPI_Aware = 2
 End Enum

 Private Declare Function SetProcessDpiAwareness Lib "shcore.dll" (ByVal Value As
PROCESS_DPI_AWARENESS) As Long

 Private Sub SetDPI()
 'Results from SetProcessDPIAwareness
 'Const S_OK = &H0&
 'Const E_INVALIDARG = &H80070057
 'Const E_ACCESSDENIED = &H80070005

 Dim lngResult As Long

 lngResult = SetProcessDpiAwareness(PROCESS_DPI_AWARENESS.Process_DPI_Unaware)

 End Sub

 Private Sub MyApplication_Startup(sender As Object, e As ApplicationServices.StartupEventArgs)
Handles Me.Startup
 SetDPI()
 End Sub

End Namespace

Manifest Example

<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0" xmlns:asmv3="urn:schemas-
microsoft-com:asm.v3" >
 <asmv3:application>
 <asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings">
 <dpiAware>true</dpiAware>

http://www.telerik.com/blogs/winforms-scaling-at-large-dpi-settings-is-it-even-possible-
http://www.telerik.com/blogs/winforms-scaling-at-large-dpi-settings-is-it-even-possible-
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 121

 </asmv3:windowsSettings>
 </asmv3:application>
</assembly>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 122

Chapter 42: Using axWindowsMediaPlayer
in VB.Net
axWindowsMediaPlayer is the control for the playing multimedia files like videos and music.

Section 42.1: Adding the axWindowsMediaPlayer
Right-click on the Toolbox, then click "Choose Items".
Select the COM Components tab, and then check Windows Media Player.
axWindowsMediaPlayer will be added to Toolbox.

Select this checkbox to use axWindowsMediaPlayer

Then you can use axWindowsMediaPlayer :)

https://i.stack.imgur.com/7DyHx.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 123

Section 42.2: Play a Multimedia File
AxWindowsMediaPlayer1.URL = "C:\My Files\Movies\Avatar.mp4"
AxWindowsMediaPlayer1.Ctlcontrols.play()

This code will play Avatar in the axWindowsMediaPlayer.

https://i.stack.imgur.com/BeFqD.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 124

Chapter 43: WPF XAML Data Binding
This example shows how to create a ViewModel and a View within the MVVM pattern and WPF, and how to bind the
two together, so that each is updated whenever the other is changed.

Section 43.1: Binding a String in the ViewModel to a TextBox in
the View
SampleViewModel.vb

'Import classes related to WPF for simplicity
Imports System.Collections.ObjectModel
Imports System.ComponentModel

Public Class SampleViewModel
 Inherits DependencyObject
 'A class acting as a ViewModel must inherit from DependencyObject

 'A simple string property
 Public Property SampleString as String
 Get
 Return CType(GetValue(SampleStringProperty), String)
 End Get

 Set(ByVal value as String)
 SetValue(SampleStringProperty, value)
 End Set
 End Property

 'The DependencyProperty that makes databinding actually work
 'for the string above
 Public Shared ReadOnly SampleStringProperty As DependencyProperty = _
 DependencyProperty.Register("SampleString", _
 GetType(String), GetType(SampleViewModel), _
 New PropertyMetadata(Nothing))

End Class

A DependencyProperty can be easily added by using the wpfdp code snippet (type wpfdp, then press the TAB key
twice), however, the code snippet is not type safe, and will not compile under Option Strict On.

SampleWindow.xaml

<Window x:Class="SampleWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:des="http://schemas.microsoft.com/expression/blend/2008"
 DataContext="{Binding}"
 Loaded="Window_Loaded">
 <Grid>
 <TextBox>
 <TextBox.Text>
 <Binding Path="SampleString" />
 </TextBox.Text>
 </TextBox>
 </Grid>
</Window>

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 125

SampleWindow.xaml.vb

Class SampleWindow

 Private WithEvents myViewModel As New SampleViewModel()

 Private Sub Window_Loaded(sender As Object, e As RoutedEventArgs)
 Me.DataContext = myViewModel
 End Sub
End Class

Note that this is a very rudimentary way to implement MVVM and databinding. A more robust practice would be to
use a platform like Unity to "inject" the ViewModel into the View.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 126

Chapter 44: Reading compressed textfile
on-the-fly
Section 44.1: Reading .gz textfile line after line
This class open a .gz file (usual format of compressed log files) and will return a line at each call of .NextLine()

There is no memory usage for temporary decompression, very useful for large file.

Imports System.IO

Class logread_gz

 Private ptr As FileStream
 Private UnGZPtr As Compression.GZipStream
 Private line_ptr As StreamReader
 Private spath As String

 Sub New(full_filename As String)
 spath = full_filename
 End Sub

 Sub Open()
 Me.ptr = File.OpenRead(spath)
 Me.UnGZPtr = New Compression.GZipStream(ptr, Compression.CompressionMode.Decompress)
 Me.line_ptr = New StreamReader(UnGZPtr)
 End Sub()

 Function NextLine() As String
 'will return Nothing if EOF
 Return Me.line_ptr.ReadLine()
 End Function

 Sub Close()
 Me.line_ptr.Close()
 Me.line_ptr.Dispose()
 Me.UnGZPtr.Close()
 Me.UnGZPtr.Dispose()
 Me.ptr.Close()
 Me.ptr.Dispose()
 End Sub

End Class

Note : there is no failsafe, for readbility purpose.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 127

Chapter 45: Threading
Section 45.1: Performing thread-safe calls using
Control.Invoke()
Using the Control.Invoke() method you may move the execution of a method or function from a background
thread to the thread that the control was created on, which is usually the UI (User Interface) thread. By doing so
your code will be queued to run on the control's thread instead, which removes the possibility of concurrency.

The Control.InvokeRequired property should also be checked in order to determine whether you need to invoke,
or if the code is already running on the same thread as the control.

The Invoke() method takes a delegate as its first parameter. A delegate holds the reference, parameter list and
return type to another method.

In Visual Basic 2010 (10.0) or higher, lambda expressions can be used to create a delegate method on the fly:

If LogTextBox.InvokeRequired = True Then
 LogTextBox.Invoke(Sub() LogTextBox.AppendText("Check passed"))
Else
 LogTextBox.AppendText("Check passed")
End If

Whereas in Visual Basic 2008 (9.0) or lower, you have to declare the delegate on your own:

Delegate Sub AddLogText(ByVal Text As String)

If LogTextBox.InvokeRequired = True Then
 LogTextBox.Invoke(New AddLogText(AddressOf UpdateLog), "Check passed")
Else
 UpdateLog("Check passed")
End If

Sub UpdateLog(ByVal Text As String)
 LogTextBox.AppendText(Text)
End Sub

Section 45.2: Performing thread-safe calls using Async/Await
If we try to change an object on the UI thread from a different thread we will get a cross-thread operation
exception:

Private Sub Button_Click(sender As Object, e As EventArgs) Handles MyButton.Click
 ' Cross thread-operation exception as the assignment is executed on a different thread
 ' from the UI one:
 Task.Run(Sub() MyButton.Text = Thread.CurrentThread.ManagedThreadId)
End Sub

Before VB 14.0 and .NET 4.5 the solution was invoking the assignment on and object living on the UI thread:

Private Sub Button_Click(sender As Object, e As EventArgs) Handles MyButton.Click
 ' This will run the conde on the UI thread:
 MyButton.Invoke(Sub() MyButton.Text = Thread.CurrentThread.ManagedThreadId)
End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 128

With VB 14.0, we can run a Task on a different thread and then have the context restored once the execution is
complete and then perform the assignment with Async/Await:

Private Async Sub Button_Click(sender As Object, e As EventArgs) Handles MyButton.Click
 ' This will run the code on a different thread then the context is restored
 ' so the assignment happens on the UI thread:
 MyButton.Text = Await Task.Run(Function() Thread.CurrentThread.ManagedThreadId)
End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 129

Chapter 46: Multithreading
Section 46.1: Multithreading using Thread Class
This example uses the Thread Class, but multithreaded applications can also be made using BackgroundWorker. The
AddNumber, SubstractNumber, and DivideNumber functions will be executed by separate threads:

Edit: Now the UI thread waits for the child threads to finish and shows the result.

Module Module1
 'Declare the Thread and assign a sub to that
 Dim AddThread As New Threading.Thread(AddressOf AddNumber)
 Dim SubstractThread As New Threading.Thread(AddressOf SubstractNumber)
 Dim DivideThread As New Threading.Thread(AddressOf DivideNumber)

 'Declare the variable for holding the result
 Dim addResult As Integer
 Dim SubStractResult As Integer
 Dim DivisionResult As Double

 Dim bFinishAddition As Boolean = False
 Dim bFinishSubstration As Boolean = False
 Dim bFinishDivision As Boolean = False

 Dim bShownAdditionResult As Boolean = False
 Dim bShownDivisionResult As Boolean = False
 Dim bShownSubstractionResult As Boolean = False

 Sub Main()

 'Now start the trheads
 AddThread.Start()
 SubstractThread.Start()
 DivideThread.Start()

 'Wait and display the results in console
 Console.WriteLine("Waiting for threads to finish...")
 Console.WriteLine("")

 While bFinishAddition = False Or bFinishDivision = False Or bFinishSubstration = False
 Threading.Thread.Sleep(50) 'UI thread is sleeping
 If bFinishAddition And Not bShownAdditionResult Then
 Console.WriteLine("Addition Result : " & addResult)
 bShownAdditionResult = True
 End If

 If bFinishSubstration And Not bShownSubstractionResult Then
 Console.WriteLine("Substraction Result : " & SubStractResult)
 bShownSubstractionResult = True
 End If

 If bFinishDivision And Not bShownDivisionResult Then
 Console.WriteLine("Division Result : " & DivisionResult)
 bShownDivisionResult = True
 End If

 End While

 Console.WriteLine("")
 Console.WriteLine("Finished all threads.")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 130

 Console.ReadKey()
 End Sub

 Private Sub AddNumber()
 Dim n1 As Integer = 22
 Dim n2 As Integer = 11

 For i As Integer = 0 To 100
 addResult = addResult + (n1 + n2)
 Threading.Thread.Sleep(50) 'sleeping Add thread
 Next
 bFinishAddition = True
 End Sub

 Private Sub SubstractNumber()
 Dim n1 As Integer = 22
 Dim n2 As Integer = 11

 For i As Integer = 0 To 80
 SubStractResult = SubStractResult - (n1 - n2)
 Threading.Thread.Sleep(50)
 Next
 bFinishSubstration = True
 End Sub

 Private Sub DivideNumber()
 Dim n1 As Integer = 22
 Dim n2 As Integer = 11
 For i As Integer = 0 To 60
 DivisionResult = DivisionResult + (n1 / n2)
 Threading.Thread.Sleep(50)
 Next
 bFinishDivision = True
 End Sub

End Module

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 131

Chapter 47: BackgroundWorker
Section 47.1: Using BackgroundWorker
Executing a task with the background worker.

Double Click on the BackgroundWorker control from the Toolbox

This is how the BackgroundWorker appears after adding it.

Double click on the added control to get the BackgroundWorker1_DoWork event and add the code to be executed
when the BackgroundWorker is called. Something like this:

Private Sub BackgroundWorker1_DoWork(ByVal sender As System.Object, ByVal e As
System.ComponentModel.DoWorkEventArgs) Handles BackgroundWorker1.DoWork

 'Do the time consuming background task here

End Sub

Calling the BackgroundWorker to perform the task can be done at any event like Button_Click,
Textbox_TextChanged, etc. as follows:

BackgroundWorker1.RunWorkerAsync()

Modify the RunWorkerCompleted event to capture the task finished event of the BackgroundWorker as follows:

Private Sub BackgroundWorker1_RunWorkerCompleted(ByVal sender As Object, ByVal e As
System.ComponentModel.RunWorkerCompletedEventArgs) Handles BackgroundWorker1.RunWorkerCompleted
 MsgBox("Done")
End Sub

This will display a message box saying Done when the worker finishes the task assigned to it.

http://i.stack.imgur.com/QuRSr.jpg
http://i.stack.imgur.com/KmxOU.jpg
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 132

Section 47.2: Accessing GUI components in
BackgroundWorker
You cannot access any GUI components from the BackgroudWorker. For example if you try to do something like
this

Private Sub BackgroundWorker1_DoWork(sender As Object, e As DoWorkEventArgs)
 TextBox1.Text = "Done"
End Sub

you will receive a runtime error saying that "Cross-thread operation not valid: Control 'TextBox1' accessed from a
thread other than the thread it was created on."

This is because the BackgroundWorker runs your code on another thread in parallel with the main thread, and the
GUI components are not thread-safe. You have to set your code to be run on the main thread using the Invoke
method, giving it a delegate:

Private Sub BackgroundWorker1_DoWork(sender As Object, e As DoWorkEventArgs)
 Me.Invoke(New MethodInvoker(Sub() Me.TextBox1.Text = "Done"))
End Sub

Or you can use the ReportProgress method of the BackgroundWorker:

Private Sub BackgroundWorker1_DoWork(sender As Object, e As DoWorkEventArgs)
 Me.BackgroundWorker1.ReportProgress(0, "Done")
End Sub

Private Sub BackgroundWorker1_ProgressChanged(sender As Object, e As ProgressChangedEventArgs)
 Me.TextBox1.Text = DirectCast(e.UserState, String)
End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 133

Chapter 48: Using BackgroundWorker
Section 48.1: Basic implementation of Background worker
class
You need to import System.ComponentModel for using background worker

Imports System.ComponentModel

Then Declare a private variable

Private bgWorker As New BackgroundWorker

You need to create two methods for background worker's DoWork and RunWorkerCompleted events and assign
them.

Private Sub MyWorker_DoWork(ByVal sender As System.Object, ByVal e As
System.ComponentModel.DoWorkEventArgs)
 'Add your codes here for the worker to execute

End Sub

The below sub will be executed when the worker finishes the job

Private Sub MyWorker_RunWorkerCompleted(ByVal sender As Object, ByVal e As
System.ComponentModel.RunWorkerCompletedEventArgs)
 'Add your codes for the worker to execute after finishing the work.

End Sub

Then within your code add the below lines to start the background worker

 bgWorker = New BackgroundWorker
 AddHandler bgWorker.DoWork, AddressOf MyWorker_DoWork
 AddHandler bgWorker.RunWorkerCompleted, AddressOf MyWorker_RunWorkerCompleted
 bgWorker.RunWorkerAsync()

When you call RunWorkerAsync() function, MyWorker_DoWork will be executed.

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 134

Chapter 49: Task-based asynchronous
pattern
Section 49.1: Basic usage of Async/Await
You can start some slow process in parallel and then collect the results when they are done:

Public Sub Main()
 Dim results = Task.WhenAll(SlowCalculation, AnotherSlowCalculation).Result

 For Each result In results
 Console.WriteLine(result)
 Next
End Sub

Async Function SlowCalculation() As Task(Of Integer)
 Await Task.Delay(2000)

 Return 40
End Function

Async Function AnotherSlowCalculation() As Task(Of Integer)
 Await Task.Delay(2000)

 Return 60
End Function

After two seconds both the results will be available.

Section 49.2: Using TAP with LINQ
You can create an IEnumerable of Task by passing AddressOf AsyncMethod to the LINQ SELECT method and then
start and wait all the results with Task.WhenAll

If your method has parameters matching the previous LINQ chain call, they will be automatically mapped.

Public Sub Main()
 Dim tasks = Enumerable.Range(0, 100).Select(AddressOf TurnSlowlyIntegerIntoString)

 Dim resultingStrings = Task.WhenAll(tasks).Result

 For Each value In resultingStrings
 Console.WriteLine(value)
 Next
End Sub

Async Function TurnSlowlyIntegerIntoString(input As Integer) As Task(Of String)
 Await Task.Delay(2000)

 Return input.ToString()
End Function

To map different arguments you can replace AddressOf Method with a lambda:

Function(linqData As Integer) MyNonMatchingMethod(linqData, "Other parameter")

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 135

Chapter 50: Debugging your application
Whenever you have a problem in your code, it is always a good idea to know what is going on inside. The class
System.Diagnostics.Debug in .Net Framework will help you a lot in this task.

The first advantage of the Debug class is that it produces code only if you build your application in Debug mode.
When you build your application in Release mode, no code will be generated from the Debug calls.

Section 50.1: Debug in the console
Module Module1
 Sub Main()
 Debug.WriteLine("This line will be shown in the Visual Studio output console")

 Console.WriteLine("Press a key to exit")
 Console.ReadKey()

 Debug.WriteLine("End of application")
 End Sub
End Module

will produce:

Section 50.2: Indenting your debug output
Module Module1

 Sub Main()
 Debug.WriteLine("Starting aplication")

 Debug.Indent()
 LoopAndDoStuff(5)
 Debug.Unindent()

 Console.WriteLine("Press a key to exit")
 Console.ReadKey()

 Debug.WriteLine("End of application")
 End Sub

 Sub LoopAndDoStuff(Iterations As Integer)
 Dim x As Integer = 0
 Debug.WriteLine("Starting loop")
 Debug.Indent()
 For i As Integer = 0 To Iterations - 1
 Debug.Write("Iteration " & (i + 1).ToString() & " of " & Iterations.ToString() & ":
Value of X: ")
 x += (x + 1)

https://msdn.microsoft.com/en-us/library/system.diagnostics.debug(v=vs.110).aspx
https://i.stack.imgur.com/CSZAI.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 136

 Debug.WriteLine(x.ToString())
 Next
 Debug.Unindent()
 Debug.WriteLine("Loop is over")
 End Sub
End Module

will produce:

Section 50.3: Debug in a text file
At the beginning of your application, your must add a TextWriterTraceListener to the Listeners list of the Debug
class.

Module Module1

 Sub Main()
 Debug.Listeners.Add(New TextWriterTraceListener("Debug of " & DateTime.Now.ToString() &
".txt"))

 Debug.WriteLine("Starting aplication")

 Console.WriteLine("Press a key to exit")
 Console.ReadKey()

 Debug.WriteLine("End of application")
 End Sub
End Module

All the Debug code produced will be outputed in the Visual Studio console AND in the text file you chose.

If the file is always the same:

Debug.Listeners.Add(New TextWriterTraceListener("Debug.txt"))

The output will be appended to the file every time AND a new file starting with a GUID then your filename will be
generated.

https://i.stack.imgur.com/wHFLT.png
https://msdn.microsoft.com/en-us/library/system.diagnostics.textwritertracelistener(v=vs.110).aspx
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 137

Chapter 51: Unit Testing in VB.NET
Section 51.1: Unit Testing for Tax Calculation
This example is divided into two pillars

SalaryCalculation Class : Calculating the net salary after tax deduction
SalaryCalculationTests Class : For testing the method that calculates the net salary

Step 1: Create Class Library, name it WagesLibrary or any appropriate name. Then rename the class to
SalaryCalculation

''' ''' Class for Salary Calculations ''' Public Class SalaryCalculation

 ''' <summary>
 ''' Employee Salary
 ''' </summary>
 Public Shared Salary As Double

 ''' <summary>
 ''' Tax fraction (0-1)
 ''' </summary>
 Public Shared Tax As Double

 ''' <summary>
 ''' Function to calculate Net Salary
 ''' </summary>
 ''' <returns></returns>
 Public Shared Function CalculateNetSalary()
 Return Salary - Salary * Tax
 End Function
End Class

Step 2 : Create Unit Test Project. Add reference to the created class library and paste the below code

Imports WagesLibrary 'Class library you want to test

''' <summary>
''' Test class for testing SalaryCalculation
''' </summary>
<TestClass()> Public Class SalaryCalculationTests

 ''' <summary>
 ''' Test case for the method CalculateNetSalary
 ''' </summary>
 <TestMethod()> Public Sub CalculateNetSalaryTest()
 SalaryCalculation.Salary = 100
 SalaryCalculation.Tax = 0.1
 Assert.AreEqual(90.0, SalaryCalculation.CalculateNetSalary(), 0.1)
 End Sub
End Class

Assert.Equal checks the expected value against the actual calculated value. the value 0.1 is used to allow
tolerance or variation between expected and actual result.

Step 3 : Run the test of the method to see result

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 138

Test result

Section 51.2: Testing Employee Class assigned and derived
Properties
This example has more tests available in unit testing.

Employee.vb (Class Library)

''' <summary>

http://i.stack.imgur.com/CEHyj.png
http://i.stack.imgur.com/RRbXy.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 139

''' Employee Class
''' </summary>
Public Class Employee

 ''' <summary>
 ''' First name of employee
 ''' </summary>
 Public Property FirstName As String = ""

 ''' <summary>
 ''' Last name of employee
 ''' </summary>
 Public Property LastName As String = ""

 ''' <summary>
 ''' Full name of employee
 ''' </summary>
 Public ReadOnly Property FullName As String = ""

 ''' <summary>
 ''' Employee's age
 ''' </summary>
 Public Property Age As Byte

 ''' <summary>
 ''' Instantiate new instance of employee
 ''' </summary>
 ''' <param name="firstName">Employee first name</param>
 ''' <param name="lastName">Employee last name</param>
 Public Sub New(firstName As String, lastName As String, dateofbirth As Date)
 Me.FirstName = firstName
 Me.LastName = lastName
 FullName = Me.FirstName + " " + Me.LastName
 Age = Convert.ToByte(Date.Now.Year - dateofbirth.Year)
 End Sub
End Class

EmployeeTest.vb (Test Project)

Imports HumanResources

<TestClass()>
Public Class EmployeeTests
 ReadOnly _person1 As New Employee("Waleed", "El-Badry", New DateTime(1980, 8, 22))
 ReadOnly _person2 As New Employee("Waleed", "El-Badry", New DateTime(1980, 8, 22))

 <TestMethod>
 Public Sub TestFirstName()
 Assert.AreEqual("Waleed", _person1.FirstName, "First Name Mismatch")
 End Sub

 <TestMethod>
 Public Sub TestLastName()
 Assert.AreNotEqual("", _person1.LastName, "No Last Name Inserted!")
 End Sub

 <TestMethod>
 Public Sub TestFullName()
 Assert.AreEqual("Waleed El-Badry", _person1.FullName, "Error in concatination of names")
 End Sub

https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 140

 <TestMethod>
 Public Sub TestAge()
 Assert.Fail("Age is not even tested !") 'Force test to fail !
 Assert.AreEqual(Convert.ToByte(36), _person1.Age)
 End Sub

 <TestMethod>
 Public Sub TestObjectReference()
 Assert.AreSame(_person1.FullName, _person2.FullName, "Different objects with same data")
 End Sub
End Class

Result after running tests

http://i.stack.imgur.com/hhJ92.png
http://i.stack.imgur.com/oohnv.png
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 141

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

Adam Zuckerman Chapters 18 and 31
Alessandro Mascolo Chapter 26
Alex B. Chapter 30
Allen Binuya Chapter 5
Andrew Morton Chapter 28
Axarydax Chapter 34
Babbillumpa Chapters 6, 10 and 12
Bart Jolling Chapter 6
Berken Usar Chapters 20 and 42
Bjørn Chapters 4 and 35
Blackwood Chapter 35
BunkerMentality Chapter 8
Carlos Borau Chapter 39
Cary Bondoc Chapters 1, 4 and 17
Chetan Sanghani Chapter 5
Cody Gray Chapters 2 and 14
Dan Drews Chapter 36
Darren Davies Chapters 2 and 23
David Chapter 32
David Wilson Chapter 22
debater Chapter 12
djv Chapters 10 and 38
Dman Chapters 9 and 40
Drarig29 Chapter 8
DrDonut Chapters 9 and 11
ElektroStudios Chapter 10
Fütemire Chapters 2, 9, 33 and 35
glaubergft Chapter 2
Happypig375 Chapters 29 and 31
Harjot Chapter 1
Imran Ali Khan Chapter 12
InteXX Chapter 33
JDC Chapters 24 and 32
Jonas_Hess Chapter 15
Jones Joseph Chapter 47
Kendra Chapter 6
keronconk Chapter 2
kodkod Chapter 10
LogicalFlaps Chapters 2 and 30
lucamauri Chapter 19
Luke Sheppard Chapters 9, 13 and 31
Mark Chapter 12
Mark Hurd Chapters 3 and 8
Martin Soles Chapter 19
Martin Verjans Chapters 1, 3 and 50
Matt Chapter 34
Matt Wilko Chapters 7, 13, 25, 28, 33 and 35

mailto:web@petercv.com
https://stackoverflow.com/users/848058/
https://stackoverflow.com/users/4014593/
https://stackoverflow.com/users/2882256/
https://stackoverflow.com/users/5038881/
https://stackoverflow.com/users/1115360/
https://stackoverflow.com/users/72746/
https://stackoverflow.com/users/4319113/
https://stackoverflow.com/users/411831/
https://stackoverflow.com/users/6771768/
https://stackoverflow.com/users/1842065/
https://stackoverflow.com/users/4424957/
https://stackoverflow.com/users/2039359/
https://stackoverflow.com/users/4676223/
https://stackoverflow.com/users/2947415/
https://stackoverflow.com/users/1936231/
https://stackoverflow.com/users/366904/
https://stackoverflow.com/users/2106228/
https://stackoverflow.com/users/1280410/
https://stackoverflow.com/users/6530111/
https://stackoverflow.com/users/5413498/
https://stackoverflow.com/users/2035148/
https://stackoverflow.com/users/832052/
https://stackoverflow.com/users/3170054/
https://stackoverflow.com/users/3970387/
https://stackoverflow.com/users/3939193/
https://stackoverflow.com/users/1248295/
https://stackoverflow.com/users/3010927/
https://stackoverflow.com/users/2830647/
https://stackoverflow.com/users/5429648/
https://stackoverflow.com/users/7003682/
https://stackoverflow.com/users/2723943/
https://stackoverflow.com/users/722393/
https://stackoverflow.com/users/256532/
https://stackoverflow.com/users/4508899/
https://stackoverflow.com/users/4084003/
https://stackoverflow.com/users/2607247/
https://stackoverflow.com/users/4772809/
https://stackoverflow.com/users/536650/
https://stackoverflow.com/users/5192880/
https://stackoverflow.com/users/69295/
https://stackoverflow.com/users/2854387/
https://stackoverflow.com/users/2278086/
https://stackoverflow.com/users/256431/
https://stackoverflow.com/users/5194523/
https://stackoverflow.com/users/5897829/
https://stackoverflow.com/users/1002306/
https://stackoverflow.com/users/500974/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

GoalKicker.com – Visual Basic® .NET Notes for Professionals 142

MatVAD Chapters 2, 4, 8, 12, 14, 16, 31, 46 and 48
Mike Robertson Chapter 16
Milliron X Chapter 43
Misaz Chapters 13, 14, 18, 25, 36 and 37
Nadeem_MK Chapter 35
Nathan Chapter 41
Nathan Tuggy Chapter 5
Nico Agusta Chapters 1, 3, 16 and 31
Nitram Chapter 35
Proger_Cbsk Chapters 11 and 44
Robert Columbia Chapters 4, 5, 8 and 21
RoyalPotato Chapter 4
Ryan Thomas Chapter 8
Sam Axe Chapters 4, 8, 19, 25, 28 and 33
sansknwoledge Chapter 29
Scott Mitchell Chapter 12
Seandk Chapter 9
Sehnsucht Chapters 2, 3, 8, 11, 18, 26 and 36
Shayan Toqraee Chapter 47
Shog9 Chapter 10
SilverShotBee Chapters 12 and 38
StardustGogeta Chapters 1 and 19
Stefano d'Antonio Chapters 33, 35, 45 and 49
Steven Doggart Chapters 8 and 10
TuxCopter Chapter 8
TyCobb Chapter 12
varocarbas Chapter 4
vbnet3d Chapters 8, 12, 13, 14, 19, 28 and 38
Vishal Chapter 31
Visual Vincent Chapter 45
void Chapters 4, 10, 11, 12 and 34
VortixDev Chapters 8 and 19
VV5198722 Chapter 27
wbadry Chapter 51
Zev Spitz Chapter 36
zyabin101 Chapter 8

https://stackoverflow.com/users/2821495/
https://stackoverflow.com/users/1757646/
https://stackoverflow.com/users/3922521/
https://stackoverflow.com/users/2229538/
https://stackoverflow.com/users/2416510/
https://stackoverflow.com/users/5875316/
https://stackoverflow.com/users/4099598/
https://stackoverflow.com/users/7591920/
https://stackoverflow.com/users/1312793/
https://stackoverflow.com/users/6848370/
https://stackoverflow.com/users/6471538/
https://stackoverflow.com/users/5981756/
https://stackoverflow.com/users/4654199/
https://stackoverflow.com/users/74015/
https://stackoverflow.com/users/186244/
https://stackoverflow.com/users/160830/
https://stackoverflow.com/users/5084686/
https://stackoverflow.com/users/4925216/
https://stackoverflow.com/users/1724583/
https://stackoverflow.com/users/811/
https://stackoverflow.com/users/1925536/
https://stackoverflow.com/users/5732397/
https://stackoverflow.com/users/1262354/
https://stackoverflow.com/users/1359668/
https://stackoverflow.com/users/5257938/
https://stackoverflow.com/users/359157/
https://stackoverflow.com/users/2480047/
https://stackoverflow.com/users/1620916/
https://stackoverflow.com/users/2284240/
https://stackoverflow.com/users/3740093/
https://stackoverflow.com/users/1029287/
https://stackoverflow.com/users/6604750/
https://stackoverflow.com/users/5198722/
https://stackoverflow.com/users/2974823/
https://stackoverflow.com/users/111794/
https://stackoverflow.com/users/6426236/
https://goalkicker.com/
https://goalkicker.com/
https://goalkicker.com/

You may also like

https://goalkicker.com/DotNETFrameworkBook
https://goalkicker.com/CBook
https://goalkicker.com/CSharpBook
https://goalkicker.com/CPlusPlusBook
https://goalkicker.com/EntityFrameworkBook
https://goalkicker.com/ExcelVBABook
https://goalkicker.com/MicrosoftSQLServerBook
https://goalkicker.com/SQLBook
https://goalkicker.com/VBABook

	Content list
	About
	Chapter 1: Getting started with Visual Basic .NET Language
	Section 1.1: Hello World
	Section 1.2: Hello World on a Textbox upon Clicking of a Button
	Section 1.3: Region
	Section 1.4: Creating a simple Calculator to get familiar with the interface and code

	Chapter 2: Declaring variables
	Section 2.1: Declaring and assigning a variable using a primitive type
	Section 2.2: Levels of declaration – Local and Member variables
	Section 2.3: Example of Access Modiﬁers

	Chapter 3: Introduction to Syntax
	Section 3.1: Intellisense Helper
	Section 3.2: Declaring a Variable
	Section 3.3: Comments
	Section 3.4: Modiﬁers
	Section 3.5: Object Initializers
	Section 3.6: Collection Initializer
	Section 3.7: Writing a function

	Chapter 4: Operators
	Section 4.1: String Concatenation
	Section 4.2: Math
	Section 4.3: Assignment
	Section 4.4: Comparison
	Section 4.5: Bitwise

	Chapter 5: Conditions
	Section 5.1: If operator
	Section 5.2: IF...Then...Else

	Chapter 6: Short-Circuiting Operators (AndAlso - OrElse)
	Section 6.1: OrElse Usage
	Section 6.2: AndAlso Usage
	Section 6.3: Avoiding NullReferenceException

	Chapter 7: Date
	Section 7.1: Converting (Parsing) a String to a Date
	Section 7.2: Converting a Date To A String

	Chapter 8: Array
	Section 8.1: Array deﬁnition
	Section 8.2: Null Array Variables
	Section 8.3: Array initialization
	Section 8.4: Declare a single-dimension array and set array element values
	Section 8.5: Jagged Array Initialization
	Section 8.6: Non-zero lower bounds
	Section 8.7: Referencing Same Array from Two Variables
	Section 8.8: Multidimensional Array initialization

	Chapter 9: Lists
	Section 9.1: Add items to a List
	Section 9.2: Check if item exists in a List
	Section 9.3: Loop through items in list
	Section 9.4: Create a List
	Section 9.5: Remove items from a List
	Section 9.6: Retrieve items from a List

	Chapter 10: Enum
	Section 10.1: GetNames()
	Section 10.2: HasFlag()
	Section 10.3: Enum deﬁnition
	Section 10.4: Member initialization
	Section 10.5: The Flags attribute
	Section 10.6: GetValues()
	Section 10.7: String parsing
	Section 10.8: ToString()
	Section 10.9: Determine whether a Enum has FlagsAttribute speciﬁed or not
	Section 10.10: For-each ﬂag (ﬂag iteration)
	Section 10.11: Determine the amount of ﬂags in a ﬂag combination
	Section 10.12: Find the nearest value in a Enum

	Chapter 11: Dictionaries
	Section 11.1: Create a dictionary ﬁlled with values
	Section 11.2: Loop through a dictionary and print all entries
	Section 11.3: Checking for key already in dictionary - data reduction
	Section 11.4: Getting a dictionary value

	Chapter 12: Looping
	Section 12.1: For...Next
	Section 12.2: For Each...Next loop for looping through collection of items
	Section 12.3: Short Circuiting
	Section 12.4: While loop to iterate while some condition is true
	Section 12.5: Nested Loop
	Section 12.6: Do...Loop

	Chapter 13: File Handling
	Section 13.1: Write Data to a File
	Section 13.2: Read All Contents of a File
	Section 13.3: Write Lines Individually to a Text File using StreamWriter

	Chapter 14: File/Folder Compression
	Section 14.1: Adding File Compression to your project
	Section 14.2: Creating zip archive from directory
	Section 14.3: Extracting zip archive to directory
	Section 14.4: Create zip archive dynamicaly

	Chapter 15: Connection Handling
	Section 15.1: Public connection property

	Chapter 16: Data Access
	Section 16.1: Read ﬁeld from Database
	Section 16.2: Simple Function to read from Database and return as DataTable

	Chapter 17: Type conversion
	Section 17.1: Converting Text of The Textbox to an Integer

	Chapter 18: ByVal and ByRef keywords
	Section 18.1: ByRef keyword
	Section 18.2: ByVal keyword

	Chapter 19: Console
	Section 19.1: Console.ReadLine()
	Section 19.2: Console.Read()
	Section 19.3: Console.ReadKey()
	Section 19.4: Prototype of command line prompt
	Section 19.5: Console.WriteLine()

	Chapter 20: Functions
	Section 20.1: Deﬁning a Function
	Section 20.2: Deﬁning a Function #2

	Chapter 21: Recursion
	Section 21.1: Compute nth Fibonacci number

	Chapter 22: Random
	Section 22.1: Declaring an instance
	Section 22.2: Generate a random number from an instance of Random

	Chapter 23: Classes
	Section 23.1: Abstract Classes
	Section 23.2: Creating classes

	Chapter 24: Generics
	Section 24.1: Create a generic class
	Section 24.2: Instance of a Generic Class
	Section 24.3: Deﬁne a 'generic' class
	Section 24.4: Use a generic class
	Section 24.5: Limit the possible types given
	Section 24.6: Create a new instance of the given type

	Chapter 25: Disposable objects
	Section 25.1: Basic concept of IDisposable
	Section 25.2: Declaring more objects in one Using

	Chapter 26: NullReferenceException
	Section 26.1: Empty Return
	Section 26.2: Uninitialized variable

	Chapter 27: Using Statement
	Section 27.1: See examples under Disposable objects

	Chapter 28: Option Strict
	Section 28.1: Why Use It?
	Section 28.2: How to Switch It On

	Chapter 29: Option Explicit
	Section 29.1: What is it?
	Section 29.2: How to switch it on?

	Chapter 30: Option Infer
	Section 30.1: How to enable/disable it
	Section 30.2: What is it?
	Section 30.3: When to use type inference

	Chapter 31: Error Handling
	Section 31.1: Try...Catch...Finally Statement
	Section 31.2: Creating custom exception and throwing
	Section 31.3: Try Catch in Database Operation
	Section 31.4: The Un-catchable Exception
	Section 31.5: Critical Exceptions

	Chapter 32: OOP Keywords
	Section 32.1: Deﬁning a class
	Section 32.2: Inheritance Modiﬁers (on classes)
	Section 32.3: Inheritance Modiﬁers (on properties and methods)
	Section 32.4: MyBase
	Section 32.5: Me vs MyClass
	Section 32.6: Overloading
	Section 32.7: Shadows
	Section 32.8: Interfaces

	Chapter 33: Extension methods
	Section 33.1: Creating an extension method
	Section 33.2: Making the language more functional with extension methods
	Section 33.3: Getting Assembly Version From Strong Name
	Section 33.4: Padding Numerics

	Chapter 34: Reﬂection
	Section 34.1: Retrieve Properties for an Instance of a Class
	Section 34.2: Get a method and invoke it
	Section 34.3: Create an instance of a generic type
	Section 34.4: Get the members of a type

	Chapter 35: Visual Basic 14.0 Features
	Section 35.1: Null conditional operator
	Section 35.2: String interpolation
	Section 35.3: Read-Only Auto-Properties
	Section 35.4: NameOf operator
	Section 35.5: Multiline string literals
	Section 35.6: Partial Modules and Interfaces
	Section 35.7: Comments after implicit line continuation
	Section 35.8: #Region directive improvements

	Chapter 36: LINQ
	Section 36.1: Selecting from array with simple condition
	Section 36.2: Mapping array by Select clause
	Section 36.3: Ordering output
	Section 36.4: Generating Dictionary From IEnumerable
	Section 36.5: Projection
	Section 36.6: Getting distinct values (using the Distinct method)

	Chapter 37: FTP server
	Section 37.1: Download ﬁle from FTP server
	Section 37.2: Download ﬁle from FTP server when login required
	Section 37.3: Upload ﬁle to FTP server
	Section 37.4: Upload ﬁle to FTP server when login required

	Chapter 38: Working with Windows Forms
	Section 38.1: Using the default Form instance
	Section 38.2: Passing Data From One Form To Another

	Chapter 39: Google Maps in a Windows Form
	Section 39.1: How to use a Google Map in a Windows Form

	Chapter 40: GDI+
	Section 40.1: Draw Shapes
	Section 40.2: Fill Shapes
	Section 40.3: Text
	Section 40.4: Create Graphic Object

	Chapter 41: WinForms SpellCheckBox
	Section 41.1: ElementHost WPF TextBox

	Chapter 42: Using axWindowsMediaPlayer in VB.Net
	Section 42.1: Adding the axWindowsMediaPlayer
	Section 42.2: Play a Multimedia File

	Chapter 43: WPF XAML Data Binding
	Section 43.1: Binding a String in the ViewModel to a TextBox in the View

	Chapter 44: Reading compressed textﬁle on-the-ﬂy
	Section 44.1: Reading .gz textﬁle line after line

	Chapter 45: Threading
	Section 45.1: Performing thread-safe calls using Control.Invoke()
	Section 45.2: Performing thread-safe calls using Async/Await

	Chapter 46: Multithreading
	Section 46.1: Multithreading using Thread Class

	Chapter 47: BackgroundWorker
	Section 47.1: Using BackgroundWorker
	Section 47.2: Accessing GUI components in BackgroundWorker

	Chapter 48: Using BackgroundWorker
	Section 48.1: Basic implementation of Background worker class

	Chapter 49: Task-based asynchronous pattern
	Section 49.1: Basic usage of Async/Await
	Section 49.2: Using TAP with LINQ

	Chapter 50: Debugging your application
	Section 50.1: Debug in the console
	Section 50.2: Indenting your debug output
	Section 50.3: Debug in a text ﬁle

	Chapter 51: Unit Testing in VB.NET
	Section 51.1: Unit Testing for Tax Calculation
	Section 51.2: Testing Employee Class assigned and derived Properties

	Credits
	You may also like

